These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 18618272)
1. Functional analysis of LjSUT4, a vacuolar sucrose transporter from Lotus japonicus. Reinders A; Sivitz AB; Starker CG; Gantt JS; Ward JM Plant Mol Biol; 2008 Oct; 68(3):289-99. PubMed ID: 18618272 [TBL] [Abstract][Full Text] [Related]
2. Substrate specificity of the Arabidopsis thaliana sucrose transporter AtSUC2. Chandran D; Reinders A; Ward JM J Biol Chem; 2003 Nov; 278(45):44320-5. PubMed ID: 12954621 [TBL] [Abstract][Full Text] [Related]
3. Analysis of the transport activity of barley sucrose transporter HvSUT1. Sivitz AB; Reinders A; Ward JM Plant Cell Physiol; 2005 Oct; 46(10):1666-73. PubMed ID: 16091371 [TBL] [Abstract][Full Text] [Related]
4. Arabidopsis sucrose transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Sivitz AB; Reinders A; Johnson ME; Krentz AD; Grof CP; Perroux JM; Ward JM Plant Physiol; 2007 Jan; 143(1):188-98. PubMed ID: 17098854 [TBL] [Abstract][Full Text] [Related]
5. Identification of a vacuolar sucrose transporter in barley and Arabidopsis mesophyll cells by a tonoplast proteomic approach. Endler A; Meyer S; Schelbert S; Schneider T; Weschke W; Peters SW; Keller F; Baginsky S; Martinoia E; Schmidt UG Plant Physiol; 2006 May; 141(1):196-207. PubMed ID: 16581873 [TBL] [Abstract][Full Text] [Related]
6. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2. Schulz A; Beyhl D; Marten I; Wormit A; Neuhaus E; Poschet G; Büttner M; Schneider S; Sauer N; Hedrich R Plant J; 2011 Oct; 68(1):129-36. PubMed ID: 21668536 [TBL] [Abstract][Full Text] [Related]
7. Arg188 in rice sucrose transporter OsSUT1 is crucial for substrate transport. Sun Y; Ward JM BMC Biochem; 2012 Nov; 13():26. PubMed ID: 23170937 [TBL] [Abstract][Full Text] [Related]
8. A sucrose transporter, LjSUT4, is up-regulated during Lotus japonicus nodule development. Flemetakis E; Dimou M; Cotzur D; Efrose RC; Aivalakis G; Colebatch G; Udvardi M; Katinakis P J Exp Bot; 2003 Jul; 54(388):1789-91. PubMed ID: 12754265 [TBL] [Abstract][Full Text] [Related]
9. Sugarcane ShSUT1: analysis of sucrose transport activity and inhibition by sucralose. Reinders A; Sivitz AB; Hsi A; Grof CP; Perroux JM; Ward JM Plant Cell Environ; 2006 Oct; 29(10):1871-80. PubMed ID: 16930313 [TBL] [Abstract][Full Text] [Related]
10. Multispectral phloem-mobile probes: properties and applications. Knoblauch M; Vendrell M; de Leau E; Paterlini A; Knox K; Ross-Elliot T; Reinders A; Brockman SA; Ward J; Oparka K Plant Physiol; 2015 Apr; 167(4):1211-20. PubMed ID: 25653316 [TBL] [Abstract][Full Text] [Related]
11. MATE transporters facilitate vacuolar uptake of epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Zhao J; Dixon RA Plant Cell; 2009 Aug; 21(8):2323-40. PubMed ID: 19684242 [TBL] [Abstract][Full Text] [Related]
12. Transport activity of rice sucrose transporters OsSUT1 and OsSUT5. Sun Y; Reinders A; LaFleur KR; Mori T; Ward JM Plant Cell Physiol; 2010 Jan; 51(1):114-22. PubMed ID: 19965875 [TBL] [Abstract][Full Text] [Related]
13. Functional characterisation and cell specificity of BvSUT1, the transporter that loads sucrose into the phloem of sugar beet (Beta vulgaris L.) source leaves. Nieberl P; Ehrl C; Pommerrenig B; Graus D; Marten I; Jung B; Ludewig F; Koch W; Harms K; Flügge UI; Neuhaus HE; Hedrich R; Sauer N Plant Biol (Stuttg); 2017 May; 19(3):315-326. PubMed ID: 28075052 [TBL] [Abstract][Full Text] [Related]
14. Identification of amino acids important for substrate specificity in sucrose transporters using gene shuffling. Reinders A; Sun Y; Karvonen KL; Ward JM J Biol Chem; 2012 Aug; 287(36):30296-304. PubMed ID: 22807445 [TBL] [Abstract][Full Text] [Related]
15. Characterization of a vacuolar sucrose transporter, HbSUT5, from Hevea brasiliensis: involvement in latex production through regulation of intracellular sucrose transport in the bark and laticifers. Long X; Li H; Yang J; Xin L; Fang Y; He B; Huang D; Tang C BMC Plant Biol; 2019 Dec; 19(1):591. PubMed ID: 31881921 [TBL] [Abstract][Full Text] [Related]
16. AtPTR4 and AtPTR6 are differentially expressed, tonoplast-localized members of the peptide transporter/nitrate transporter 1 (PTR/NRT1) family. Weichert A; Brinkmann C; Komarova NY; Dietrich D; Thor K; Meier S; Suter Grotemeyer M; Rentsch D Planta; 2012 Feb; 235(2):311-23. PubMed ID: 21904872 [TBL] [Abstract][Full Text] [Related]
18. A nitrogen-dependent switch in the high affinity ammonium transport in Medicago truncatula. Straub D; Ludewig U; Neuhäuser B Plant Mol Biol; 2014 Nov; 86(4-5):485-94. PubMed ID: 25164101 [TBL] [Abstract][Full Text] [Related]
19. A kinetic model with ordered cytoplasmic dissociation for SUC1, an Arabidopsis H+/sucrose cotransporter expressed in Xenopus oocytes. Zhou J; Theodoulou F; Sauer N; Sanders D; Miller AJ J Membr Biol; 1997 Sep; 159(2):113-25. PubMed ID: 9307438 [TBL] [Abstract][Full Text] [Related]
20. Sucrose- and H-dependent charge movements associated with the gating of sucrose transporter ZmSUT1. Carpaneto A; Koepsell H; Bamberg E; Hedrich R; Geiger D PLoS One; 2010 Sep; 5(9):e12605. PubMed ID: 20838661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]