These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 18618544)

  • 1. A dense cell retention culture system using stirred ceramic membrane reactor.
    Suzuki T; Sato T; Kominami M
    Biotechnol Bioeng; 1994 Nov; 44(10):1186-92. PubMed ID: 18618544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A perfusion culture system using a stirred ceramic membrane reactor for hyperproduction of IgG2a monoclonal antibody by hybridoma cells.
    Dong H; Tang YJ; Ohashi R; Hamel JF
    Biotechnol Prog; 2005; 21(1):140-7. PubMed ID: 15903251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous production of lactic acid from molasses by perfusion culture of Lactococcus lactis using a stirred ceramic membrane reactor.
    Ohashi R; Yamamoto T; Suzuki T
    J Biosci Bioeng; 1999; 87(5):647-54. PubMed ID: 16232533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-production of biomass and metabolites by cell retention culture of Leuconostoc citreum.
    Sung IK; Han NS; Kim BS
    Bioprocess Biosyst Eng; 2012 Jun; 35(5):715-20. PubMed ID: 22080938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perfusion culture of hybridoma cells for hyperproduction of IgG(2a) monoclonal antibody in a wave bioreactor-perfusion culture system.
    Tang YJ; Ohashi R; Hamel JF
    Biotechnol Prog; 2007; 23(1):255-64. PubMed ID: 17269696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Bacillus thuringiensis spores in total cell retention culture and two-stage continuous culture using an internal ceramic filter system.
    Kang BC; Lee SY; Chang HN
    Biotechnol Bioeng; 1993 Nov; 42(9):1107-12. PubMed ID: 18613240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous ethanol production by immobilized yeast reactor coupled with membrane pervaporation unit.
    Shabtai Y; Chaimovitz S; Freeman A; Katchalski-Katzir E; Linder C; Nemas M; Perry M; Kedem O
    Biotechnol Bioeng; 1991 Oct; 38(8):869-76. PubMed ID: 18600843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repeated fed-batch lactic acid production in a packed bed-stirred fermentor system using a pH feedback feeding method.
    Zhang Y; Cong W; Shi SY
    Bioprocess Biosyst Eng; 2011 Jan; 34(1):67-73. PubMed ID: 20607299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethanol production from nonsterilized carob pod extract by free and immobilized Saccharomyces cerevisiae cells using fed-batch culture.
    Roukas T
    Biotechnol Bioeng; 1994 Feb; 43(3):189-94. PubMed ID: 18615650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced acetone-butanol fermentation using repeated fed-batch operation coupled with cell recycle by membrane and simultaneous removal of inhibitory products by adsorption.
    Yang X; Tsao GT
    Biotechnol Bioeng; 1995 Aug; 47(4):444-50. PubMed ID: 18623420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-line purification of monoclonal antibodies using an integrated stirred-tank reactor/expanded-bed adsorption system.
    Ohashi R; Otero JM; Chwistek A; Yamato I; Hamel JF
    Biotechnol Prog; 2002; 18(6):1292-300. PubMed ID: 12467465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental study of a ceramic microsparging aeration system in a pilot-scale animal cell culture.
    Nehring D; Czermak P; Vorlop J; Lübben H
    Biotechnol Prog; 2004; 20(6):1710-7. PubMed ID: 15575703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control.
    Kim BS; Lee SC; Lee SY; Chang HN; Chang YK; Woo SI
    Biotechnol Bioeng; 1994 Apr; 43(9):892-8. PubMed ID: 18615882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fed-batch cultivation of Saccharomyces cerevisiae in a hyperbaric bioreactor.
    Belo I; Pinheiro R; Mota M
    Biotechnol Prog; 2003; 19(2):665-71. PubMed ID: 12675615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol fermentation in an immobilized cell reactor using Saccharomyces cerevisiae.
    Najafpour G; Younesi H; Syahidah Ku Ismail K
    Bioresour Technol; 2004 May; 92(3):251-60. PubMed ID: 14766158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Citric acid production by Candida lipolytica Y 1095 in cell recycle and fed-batch fermentors.
    Rane KD; Sims KA
    Biotechnol Bioeng; 1995 May; 46(4):325-32. PubMed ID: 18623319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bubble bed reactor: A reactor design to minimize the damage of bubble aeration on animal cells.
    Sucker HG; Jordan M; Eppenberger HM; Widmer F
    Biotechnol Bioeng; 1994 Nov; 44(10):1246-54. PubMed ID: 18618551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of substrate oscillations on acetate formation and growth yield in Escherichia coli glucose limited fed-batch cultivations.
    Neubauer P; Häggström L; Enfors SO
    Biotechnol Bioeng; 1995 Jul; 47(2):139-46. PubMed ID: 18623386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fed-batch coculture of Lactobacillus kefiranofaciens with Saccharomyces cerevisiae for effective production of kefiran.
    Tada S; Katakura Y; Ninomiya K; Shioya S
    J Biosci Bioeng; 2007 Jun; 103(6):557-62. PubMed ID: 17630128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.