These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 18618547)

  • 21. Multivariate analysis of paracetamol, propiphenazone, caffeine and thiamine in quaternary mixtures by PCR, PLS and ANN calibrations applied on wavelet transform data.
    Dinç E; Baleanu D; Ioele G; De Luca M; Ragno G
    J Pharm Biomed Anal; 2008 Dec; 48(5):1471-5. PubMed ID: 18990522
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Near-infrared spectroscopy quantitative determination of pefloxacin mesylate concentration in pharmaceuticals by using partial least squares and principal component regression multivariate calibration.
    Xie Y; Song Y; Zhang Y; Zhao B
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1535-9. PubMed ID: 20299275
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Quantitative analysis of electronic absorption spectroscopy by piecewise orthogonal signal correction and partial least square].
    Cheng Z; Zhu AS; Zhang LQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr; 28(4):860-4. PubMed ID: 18619316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative analysis of multivariate data using artificial neural networks: a tutorial review and applications to the deconvolution of pyrolysis mass spectra.
    Goodacre R; Neal MJ; Kell DB
    Zentralbl Bakteriol; 1996 Aug; 284(4):516-39. PubMed ID: 8899971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polarography and artificial neural network for the simultaneous determination of nalidixic acid and its main metabolite (7-hydroxymethylnalidixic acid).
    Guiberteau A; Díaz TG; Rodríguez Cáceres MI; Ortiz Burguillos JM; Merás ID; López FS
    Talanta; 2004 Feb; 62(2):357-65. PubMed ID: 18969303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid authentication of animal cell lines using pyrolysis mass spectrometry and auto-associative artificial neural networks.
    Goodacre R; Rischert DJ; Evans PM; Kell DB
    Cytotechnology; 1996 Jan; 21(3):231-41. PubMed ID: 22358755
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous quantitative analysis of ternary mixtures of D-mannitol polymorphs by FT-Raman spectroscopy and multivariate calibration models.
    Braun DE; Maas SG; Zencirci N; Langes C; Urbanetz NA; Griesser UJ
    Int J Pharm; 2010 Jan; 385(1-2):29-36. PubMed ID: 19835939
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mass spectrometry and partial least-squares regression: a tool for identification of wheat variety and end-use quality.
    Sørensen HA; Petersen MK; Jacobsen S; Søndergaard I
    J Mass Spectrom; 2004 Jun; 39(6):607-12. PubMed ID: 15236298
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resolution of mixtures of three nonsteroidal anti-inflammatory drugs by fluorescence using partial least squares multivariate calibration with previous wavelength selection by Kohonen artificial neural networks.
    Capitán-Vallvey LF; Navas N; Del Olmo M; Consonni V; Todeschini R
    Talanta; 2000 Sep; 52(6):1069-79. PubMed ID: 18968069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative determination of diclofenac sodium in solid dosage forms by FT-Raman spectroscopy.
    Mazurek S; Szostak R
    J Pharm Biomed Anal; 2008 Nov; 48(3):814-21. PubMed ID: 18819768
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid identification using pyrolysis mass spectrometry and artificial neural networks of Propionibacterium acnes isolated from dogs.
    Goodacre R; Neal MJ; Kell DB; Greenham LW; Noble WC; Harvey RG
    J Appl Bacteriol; 1994 Feb; 76(2):124-34. PubMed ID: 8144414
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Advanced nonlinear approaches for predicting the ingredient composition in compound feedingstuffs by near-infrared reflection spectroscopy.
    Pérez-Marín D; Garrido-Varo A; Guerrero JE; Fearn T; Davies AM
    Appl Spectrosc; 2008 May; 62(5):536-41. PubMed ID: 18498695
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resolution of batch variations in pyrolysis mass spectrometry of bacteria by the use of artificial neural network analysis.
    Freeman R; Sisson PR; Ward AC
    Antonie Van Leeuwenhoek; 1995 Oct; 68(3):253-60. PubMed ID: 8572684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monitoring substrate and products in a bioprocess with FTIR spectroscopy coupled to artificial neural networks enhanced with a genetic-algorithm-based method for wavelength selection.
    Franco VG; Perín JC; Mantovani VE; Goicoechea HC
    Talanta; 2006 Jan; 68(3):1005-12. PubMed ID: 18970424
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pyrolysis mass spectrometry for distinguishing potential hoax materials from bioterror agents.
    Wilkes JG; Rafii F; Sutherland JB; Rushing LG; Buzatu DA
    Rapid Commun Mass Spectrom; 2006; 20(16):2383-6. PubMed ID: 16841357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Nondestructive test on predicting sugar content and valid acidity of mango by spectroscopy technology].
    Yu JJ; He Y; Bao YD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Dec; 28(12):2839-42. PubMed ID: 19248495
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of compound aminopyrine phenacetin tablets by using artificial neural networks combined with principal components analysis.
    Dou Y; Mi H; Zhao L; Ren Y; Ren Y
    Anal Biochem; 2006 Apr; 351(2):174-80. PubMed ID: 16359633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Qualitative and quantitative analysis of pyrolysis oil by gas chromatography with flame ionization detection and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry.
    Sfetsas T; Michailof C; Lappas A; Li Q; Kneale B
    J Chromatogr A; 2011 May; 1218(21):3317-25. PubMed ID: 21036362
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pure component selectivity analysis of multivariate calibration models from near-infrared spectra.
    Arnold MA; Small GW; Xiang D; Qui J; Murhammer DW
    Anal Chem; 2004 May; 76(9):2583-90. PubMed ID: 15117201
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A kinetic spectrophotometric method for simultaneous determination of glycine and lysine by artificial neural networks.
    Hasani M; Yaghoubi L; Abdollahi H
    Anal Biochem; 2007 Jun; 365(1):74-81. PubMed ID: 17374354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.