These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 18618553)

  • 21. Evolution of liquid holdup profile in a standing protein stabilized foam.
    Wang Z; Narsimhan G
    J Colloid Interface Sci; 2004 Dec; 280(1):224-33. PubMed ID: 15476794
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of Liquid Properties and Operating Variables on Enrichment Ratio in Nonfoaming and Foaming Adsorptive Bubble Separation Techniques.
    Suzuki A; Maruyama H
    J Colloid Interface Sci; 2001 Jun; 238(1):54-61. PubMed ID: 11350136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of cell-to-bubble attachment in sparged bioreactors in the presence of cell-protecting additives.
    Michaels JD; Nowak JE; Mallik AK; Koczo K; Wasan DT; Papoutsakis ET
    Biotechnol Bioeng; 1995 Aug; 47(4):407-19. PubMed ID: 18623417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probing heat-stable water-soluble proteins from barley to malt and beer.
    Perrocheau L; Rogniaux H; Boivin P; Marion D
    Proteomics; 2005 Jul; 5(11):2849-58. PubMed ID: 15986330
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Beta-lactoglobulin aggregates in foam films: correlation between foam films and foaming properties.
    Rullier B; Axelos MA; Langevin D; Novales B
    J Colloid Interface Sci; 2009 Aug; 336(2):750-5. PubMed ID: 19476951
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining concentration depth profiles of thin foam films with neutral impact collision ion scattering spectroscopy.
    Ridings C; Andersson GG
    Rev Sci Instrum; 2010 Nov; 81(11):113907. PubMed ID: 21133486
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High pressure effect on foaming properties of beta-lactoglobulin and dextran sulfate mixture.
    Ibanoglu E
    Nahrung; 2001 Oct; 45(5):342-6. PubMed ID: 11715346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of rhamnolipids on pulmonary surfactant foam films.
    Cohen R; Todorov R; Vladimirov G; Exerowa D
    Langmuir; 2010 Jun; 26(12):9423-8. PubMed ID: 20423060
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Purification and concentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosa SP4 using foam fractionation.
    Sarachat T; Pornsunthorntawee O; Chavadej S; Rujiravanit R
    Bioresour Technol; 2010 Jan; 101(1):324-30. PubMed ID: 19716289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Batch foam separation of a soluble protein.
    Maruyama H; Seki H; Suzuki A; Inoue N
    Water Res; 2007 Feb; 41(3):710-8. PubMed ID: 16959290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FPG1, a gene involved in foam formation in Saccharomyces cerevisiae.
    Blasco L; Veiga-Crespo P; Villa TG
    Yeast; 2011 Jun; 28(6):437-51. PubMed ID: 21425329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Covalent binding of a nerve agent hydrolyzing enzyme within polyurethane foams.
    Lejeune KE; Russell AJ
    Biotechnol Bioeng; 1996 Aug; 51(4):450-7. PubMed ID: 18629797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High efficiency enrichment of total and single whey proteins by pH controlled foam fractionation.
    Ekici P; Backleh-Sohrt M; Parlar H
    Int J Food Sci Nutr; 2005 May; 56(3):223-9. PubMed ID: 16009637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins.
    Davis JP; Foegeding EA
    Colloids Surf B Biointerfaces; 2007 Feb; 54(2):200-10. PubMed ID: 17123793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability of barley and malt lipid transfer protein 1 (LTP1) toward heating and reducing agents: relationships with the brewing process.
    Perrocheau L; Bakan B; Boivin P; Marion D
    J Agric Food Chem; 2006 Apr; 54(8):3108-13. PubMed ID: 16608238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system.
    Shrestha LK; Shrestha RG; Sharma SC; Aramaki K
    J Colloid Interface Sci; 2008 Dec; 328(1):172-9. PubMed ID: 18823901
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Aqueous foam stabilized by dispersed surfactant solid and lamellar liquid crystalline phase.
    Shrestha LK; Acharya DP; Sharma SC; Aramaki K; Asaoka H; Ihara K; Tsunehiro T; Kunieda H
    J Colloid Interface Sci; 2006 Sep; 301(1):274-81. PubMed ID: 16725148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Foam separation of DNA and proteins from solutions.
    Lalchev Z; Dimitrova L; Tzvetkova P; Exerowa D
    Biotechnol Bioeng; 1982 Oct; 24(10):2253-62. PubMed ID: 18546131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The concentration of white spot disease virus for its detection in sea water using a combined ferric colloid adsorption- and foam separation-based method.
    Suzuki Y; Suzuki T; Kono T; Mekata T; Sakai M; Itami T
    J Virol Methods; 2011 May; 173(2):227-32. PubMed ID: 21345353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Properties of aqueous foams stabilized by dodecyltrimethylammonium bromide.
    Carey E; Stubenrauch C
    J Colloid Interface Sci; 2009 May; 333(2):619-27. PubMed ID: 19268300
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.