BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18618766)

  • 1. Mapping the cellular network of the circadian clock in two cockroach species.
    Wen CJ; Lee HJ
    Arch Insect Biochem Physiol; 2008 Aug; 68(4):215-31. PubMed ID: 18618766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of the circadian clock in the German cockroach, Blattella germanica.
    Yang YY; Wen CJ; Mishra A; Tsai CW; Lee HJ
    J Insect Physiol; 2009 May; 55(5):469-78. PubMed ID: 19245873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neurohormones as putative circadian clock output signals in the central nervous system of two cricket species.
    Sehadová H; Shao QM; Sehnal F; Takeda M
    Cell Tissue Res; 2007 Apr; 328(1):239-55. PubMed ID: 17151870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of PDF-immunoreactive cells, possible clock neurons, in the housefly Musca domestica.
    Pyza E; Siuta T; Tanimura T
    Microsc Res Tech; 2003 Oct; 62(2):103-13. PubMed ID: 12966497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of corazonin and pigment-dispersing factor in the cephalic ganglia of termites.
    Závodská R; Wen CJ; Hrdý I; Sauman I; Lee HJ; Sehnal F
    Arthropod Struct Dev; 2008 Jul; 37(4):273-86. PubMed ID: 18394958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-localization and unique distributions of two clock proteins CYCLE and CLOCK in the cephalic ganglia of the ground cricket, Allonemobius allardi.
    Shao QM; Hiragaki S; Takeda M
    Cell Tissue Res; 2008 Feb; 331(2):435-46. PubMed ID: 18046580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corazonin- and PDF-immunoreactivities in the cephalic ganglia of termites.
    Závodská R; Wen CJ; Sehnal F; Hrdý I; Lee HJ; Sauman I
    J Insect Physiol; 2009 May; 55(5):441-9. PubMed ID: 19073190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pigment dispersing factor: an output regulator of the circadian clock in the German cockroach.
    Lee CM; Su MT; Lee HJ
    J Biol Rhythms; 2009 Feb; 24(1):35-43. PubMed ID: 19150928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The circadian timing system in the brain of the fifth larval instar of Rhodnius prolixus (hemiptera).
    Vafopoulou X; Terry KL; Steel CG
    J Comp Neurol; 2010 Apr; 518(8):1264-82. PubMed ID: 20151359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patterns of PERIOD and pigment-dispersing hormone immunoreactivity in the brain of the European honeybee (Apis mellifera): age- and time-related plasticity.
    Bloch G; Solomon SM; Robinson GE; Fahrbach SE
    J Comp Neurol; 2003 Sep; 464(3):269-84. PubMed ID: 12900924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling population dynamics of two cockroach species: effects of the circadian clock, interspecific competition and pest control.
    Wu HH; Lee HJ; Horng SB; Berec L
    J Theor Biol; 2007 Dec; 249(3):473-86. PubMed ID: 17904163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic connections of PDF-immunoreactive lateral neurons projecting to the dorsal protocerebrum of Drosophila melanogaster.
    Yasuyama K; Meinertzhagen IA
    J Comp Neurol; 2010 Feb; 518(3):292-304. PubMed ID: 19941354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of pigment-dispersing factor-immunoreactive neurons in a standardized atlas of the brain of the cockroach Leucophaea maderae.
    Wei H; el Jundi B; Homberg U; Stengl M
    J Comp Neurol; 2010 Oct; 518(20):4113-33. PubMed ID: 20878779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of the brain region containing pigment-dispersing factor-immunoreactive neurons in the photoperiodic response of the bean bug, Riptortus pedestris.
    Ikeno T; Numata H; Goto SG; Shiga S
    J Exp Biol; 2014 Feb; 217(Pt 3):453-62. PubMed ID: 24198258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural isoforms of the circadian neuropeptide PDF expressed in the optic lobes of the cricket Gryllus bimaculatus: immunocytochemical evidence from specific monoclonal antibodies.
    Honda T; Matsushima A; Sumida K; Chuman Y; Sakaguchi K; Onoue H; Meinertzhagen IA; Shimohigashi Y; Shimohigashi M
    J Comp Neurol; 2006 Nov; 499(3):404-21. PubMed ID: 16998911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular structure, expression patterns, and localization of the circadian transcription modulator CYCLE in the cricket, Dianemobius nigrofasciatus.
    Shao QM; Bembenek J; Trang le TD; Hiragaki S; Takeda M
    J Insect Physiol; 2008 Feb; 54(2):403-13. PubMed ID: 18082762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuroanatomical relations of prothoracicotropic hormone neurons with the circadian timekeeping system in the brain of larval and adult Rhodnius prolixus (Hemiptera).
    Vafopoulou X; Steel CG; Terry KL
    J Comp Neurol; 2007 Aug; 503(4):511-24. PubMed ID: 17534946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta.
    Wise S; Davis NT; Tyndale E; Noveral J; Folwell MG; Bedian V; Emery IF; Siwicki KK
    J Comp Neurol; 2002 Jun; 447(4):366-80. PubMed ID: 11992522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunoreactivities to three circadian clock proteins in two ground crickets suggest interspecific diversity of the circadian clock structure.
    Shao QM; Sehadová H; Ichihara N; Sehnal F; Takeda M
    J Biol Rhythms; 2006 Apr; 21(2):118-31. PubMed ID: 16603676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PDF cycling in the dorsal protocerebrum of the Drosophila brain is not necessary for circadian clock function.
    Kula E; Levitan ES; Pyza E; Rosbash M
    J Biol Rhythms; 2006 Apr; 21(2):104-17. PubMed ID: 16603675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.