BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 18618784)

  • 1. Transport of bacteria in porous media: II. A model for convective Transport and growth.
    Sarkar AK; Georgiou G; Sharma MM
    Biotechnol Bioeng; 1994 Aug; 44(4):499-508. PubMed ID: 18618784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transport of bacteria in porous media: I. An experimental investigation.
    Sarkar AK; Georgiou G; Sharma MM
    Biotechnol Bioeng; 1994 Aug; 44(4):489-97. PubMed ID: 18618783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of porous media permeability from in situ Leuconostoc mesenteroides growth and dextran production.
    Lappan RE; Fogler HS
    Biotechnol Bioeng; 1996 Apr; 50(1):6-15. PubMed ID: 18626894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contaminant transport in groundwater in the presence of colloids and bacteria: model development and verification.
    Bekhit HM; El-Kordy MA; Hassan AE
    J Contam Hydrol; 2009 Sep; 108(3-4):152-67. PubMed ID: 19695736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling microbial-mediated reduction in batch reactors.
    Mohamed MM; Hatfield K
    Chemosphere; 2005 May; 59(8):1207-17. PubMed ID: 15833496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mathematical model for characterization of bacterial migration through sand cores.
    Barton JW; Ford RM
    Biotechnol Bioeng; 1997 Mar; 53(5):487-96. PubMed ID: 18634044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the transport of emulsions in porous media.
    Cortis A; Ghezzehei TA
    J Colloid Interface Sci; 2007 Sep; 313(1):1-4. PubMed ID: 17493630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cometabilic kinetics model incorporating enzyme inhbition, inactivation, and recovery: I. Model development, analysis, and testing.
    Ely RL; Williamson KJ; Guenther RB; Hyman MR; Arp DJ
    Biotechnol Bioeng; 1995 May; 46(3):218-31. PubMed ID: 18623306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards optimum permeability reduction in porous media using biofilm growth simulations.
    Pintelon TR; Graf von der Schulenburg DA; Johns ML
    Biotechnol Bioeng; 2009 Jul; 103(4):767-79. PubMed ID: 19309753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microscale model of bacterial and biofilm dynamics in porous media.
    Dillon R; Fauci L
    Biotechnol Bioeng; 2000 Jun; 68(5):536-47. PubMed ID: 10797240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.
    Kanti Sen T; Khilar KC
    Adv Colloid Interface Sci; 2006 Feb; 119(2-3):71-96. PubMed ID: 16324681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Illuminating reactive microbial transport in saturated porous media: demonstration of a visualization method and conceptual transport model.
    Oates PM; Castenson C; Harvey CF; Polz M; Culligan P
    J Contam Hydrol; 2005 May; 77(4):233-45. PubMed ID: 15854718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
    Lebert I; Dussap CG; Lebert A
    Int J Food Microbiol; 2005 Jul; 102(3):305-22. PubMed ID: 16014298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment.
    Yabusaki SB; Fang Y; Williams KH; Murray CJ; Ward AL; Dayvault RD; Waichler SR; Newcomer DR; Spane FA; Long PE
    J Contam Hydrol; 2011 Nov; 126(3-4):271-90. PubMed ID: 22115092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exposure of biofilms to slow flow fields: the convective contribution to growth and disinfection.
    Eberl HJ; Sudarsan R
    J Theor Biol; 2008 Aug; 253(4):788-807. PubMed ID: 18547590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leuconostoc mesenteroides growth kinetics with application to bacterial profile modification.
    Lappan RE; Fogler HS
    Biotechnol Bioeng; 1994 Apr; 43(9):865-73. PubMed ID: 18615879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of continuous time random walk theory to nonequilibrium transport in soil.
    Li N; Ren L
    J Contam Hydrol; 2009 Sep; 108(3-4):134-51. PubMed ID: 19692144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of bacteria with favorable transport properties through porous rock for the application of microbial-enhanced oil recovery.
    Jang LK; Chang PW; Findley JE; Yen TF
    Appl Environ Microbiol; 1983 Nov; 46(5):1066-72. PubMed ID: 16346414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.