These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

398 related articles for article (PubMed ID: 18618795)

  • 1. Formation and growth of heterotrophic aerobic biofilms on small suspended particles in airlift reactors.
    Tijhuis L; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1994 Aug; 44(5):595-608. PubMed ID: 18618795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of nitrifying biofilms on small suspended particles in airlift reactors.
    Tijhuis L; Huisman JL; Hekkelman HD; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 Sep; 47(5):585-95. PubMed ID: 18623438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Abrasion of suspended biofilm pellets in airlift reactors: importance of shape, structure, and particle concentrations.
    Gjaltema A; Vinke JL; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1997 Jan; 53(1):88-99. PubMed ID: 18629963
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological oxidation of hydrogen sulfide in mineral media using a biofilm airlift suspension reactor.
    Moghanloo GM; Fatehifar E; Saedy S; Aghaeifar Z; Abbasnezhad H
    Bioresour Technol; 2010 Nov; 101(21):8330-5. PubMed ID: 20594822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advanced start-up of anaerobic attached film expanded bed reactor by pre-aeration of biofilm carrier.
    Ye FX; Chen YX; Feng XS
    Bioresour Technol; 2005 Jan; 96(1):115-9. PubMed ID: 15364089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competition between planktonic and fixed microorganisms during the start-up of methanogenic biofilm reactors.
    Cresson R; Escudié R; Steyer JP; Delgenès JP; Bernet N
    Water Res; 2008 Feb; 42(3):792-800. PubMed ID: 17825351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detachment of biomass from suspended nongrowing spherical biofilms in airlift reactors.
    Gjaltema A; Tijhuis L; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 May; 46(3):258-69. PubMed ID: 18623310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Abrasion of suspended biofilm pellets in airlift reactors: effect of particle size.
    Gjaltema A; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1997 Jul; 55(1):206-15. PubMed ID: 18636458
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of heterotrophic layer formation on nitrifying biofilms in a biofilm airlift suspension reactor.
    van Benthum WA; van Loosdrecht MD; Heijnen JJ
    Biotechnol Bioeng; 1997 Feb; 53(4):397-405. PubMed ID: 18634029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-rate acidophilic ferrous iron oxidation in a biofilm airlift reactor and the role of the carrier material.
    Ebrahimi S; Fernández Morales FJ; Kleerebezem R; Heijnen JJ; van Loosdrecht MC
    Biotechnol Bioeng; 2005 May; 90(4):462-72. PubMed ID: 15772947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation.
    Brányik T; Vicente AA; Kuncová G; Podrazký O; Dostálek P; Teixeira JA
    Biotechnol Prog; 2004; 20(6):1733-40. PubMed ID: 15575706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of inverse anaerobic fluidized bed reactor for treating high strength organic wastewater during start-up phase.
    Sowmeyan R; Swaminathan G
    Bioresour Technol; 2008 Sep; 99(14):6280-4. PubMed ID: 18191565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of active biomass distribution in a BGAC fluidized bed reactor using GFP tagged Pseudomonas putida F1.
    Herzberg M; Dosoretz CG; Kuhn J; Klein S; Green M
    Water Res; 2006 Aug; 40(14):2704-12. PubMed ID: 16814359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of biofilm detachment in biofilm airlift suspension reactors.
    Tijhuis L; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 Mar; 45(6):481-7. PubMed ID: 18623247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of hydrodynamic conditions on the start-up of methanogenic inverse turbulent bed reactors.
    Cresson R; Escudié R; Carrère H; Delgenès JP; Bernet N
    Water Res; 2007 Feb; 41(3):603-12. PubMed ID: 17188736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of acetonitrile by adapted biofilm in a membrane-aerated biofilm reactor.
    Li T; Bai R; Ohandja DG; Liu J
    Biodegradation; 2009 Jul; 20(4):569-80. PubMed ID: 19137403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70 degrees C).
    Zheng H; Zeng RJ; Angelidaki I
    Biotechnol Bioeng; 2008 Aug; 100(5):1034-8. PubMed ID: 18383142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial activity of biofilm during start-up period of anaerobic hybrid reactor at low and high upflow feeding velocity.
    Suraruksa B; Nopharatana A; Chaiprasert P; Tanticharoen M; Bhumiratana S
    Water Sci Technol; 2003; 48(8):79-87. PubMed ID: 14682573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solids retention time in spherical biofilms in a biofilm airlift suspension reactor.
    Tijhuis L; van Benthum WA; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1994 Oct; 44(8):867-79. PubMed ID: 18618904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of biofilm growth, substrate conversion and mass transfer under different hydrodynamic conditions.
    Horn H; Wäsche S; Hempel DC
    Water Sci Technol; 2002; 46(1-2):249-52. PubMed ID: 12216631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.