These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 18618882)

  • 1. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water.
    Mulvihill M; Tao A; Benjauthrit K; Arnold J; Yang P
    Angew Chem Int Ed Engl; 2008; 47(34):6456-60. PubMed ID: 18618882
    [No Abstract]   [Full Text] [Related]  

  • 2. Highly sensitive SERS detection of As3+ ions in aqueous media using glutathione functionalized silver nanoparticles.
    Li J; Chen L; Lou T; Wang Y
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3936-41. PubMed ID: 21916441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface-enhanced Raman spectroscopy using silver nanoparticles on a precoated microscope slide.
    Li YS; Cheng J; Chung KT
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Feb; 69(2):524-7. PubMed ID: 17631042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New surface-enhanced Raman spectroscopy substrates via self-assembly of silver nanoparticles for perchlorate detection in water.
    Wang W; Gu B
    Appl Spectrosc; 2005 Dec; 59(12):1509-15. PubMed ID: 16390591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace detection of triphenylene by surface enhanced Raman spectroscopy using functionalized silver nanoparticles with bis-acridinium lucigenine.
    López-Tocón I; Otero JC; Arenas JF; García-Ramos JV; Sánchez-Cortés S
    Langmuir; 2010 May; 26(10):6977-81. PubMed ID: 20205417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of anti-aggregation silver nanoparticles based on inositol hexakisphosphoric micelles for a stable surface enhanced Raman scattering substrate.
    Wang N; Yang HF; Zhu X; Zhang R; Wang Y; Huang GF; Zhang ZR
    Nanotechnology; 2009 Aug; 20(31):315603. PubMed ID: 19597257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe.
    Wang Z; Bonoiu A; Samoc M; Cui Y; Prasad PN
    Biosens Bioelectron; 2008 Jan; 23(6):886-91. PubMed ID: 17996441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples.
    Ruan C; Luo W; Wang W; Gu B
    Anal Chim Acta; 2007 Dec; 605(1):80-6. PubMed ID: 18022414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fourier transform raman and density functional theory studies on the adsorption behavior of p-hydroxybenzoic acid on silver nanoparticles.
    Wu H; Fang Y; Zhang PX
    J Phys Chem B; 2005 Nov; 109(46):21865-7. PubMed ID: 16853840
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance gold nanorods and silver nanocubes in surface-enhanced Raman spectroscopy of pesticides.
    Costa JC; Ando RA; Sant'Ana AC; Rossi LM; Santos PS; Temperini ML; Corio P
    Phys Chem Chem Phys; 2009 Sep; 11(34):7491-8. PubMed ID: 19690724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A facile, water-based synthesis of highly branched nanostructures of silver.
    Wang Y; Camargo PH; Skrabalak SE; Gu H; Xia Y
    Langmuir; 2008 Oct; 24(20):12042-6. PubMed ID: 18817421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-enhanced Raman scattering of 5-fluorouracil adsorbed on silver nanostructures.
    Sardo M; Ruano C; Castro JL; López-Tocón I; Soto J; Ribeiro-Claro P; Otero JC
    Phys Chem Chem Phys; 2009 Sep; 11(34):7437-43. PubMed ID: 19690716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly sensitive trace analysis of paraquat using a surface-enhanced Raman scattering microdroplet sensor.
    Gao R; Choi N; Chang SI; Kang SH; Song JM; Cho SI; Lim DW; Choo J
    Anal Chim Acta; 2010 Nov; 681(1-2):87-91. PubMed ID: 21035607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultra-sensitive trace analysis of cyanide water pollutant in a PDMS microfluidic channel using surface-enhanced Raman spectroscopy.
    Yea KH; Lee S; Kyong JB; Choo J; Lee EK; Joo SW; Lee S
    Analyst; 2005 Jul; 130(7):1009-11. PubMed ID: 15965522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects.
    Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T
    Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors affecting the sorption of model environmental pollutants onto silver polydimethylsiloxane nanocomposite Raman substrates.
    De Jesús MA; Giesfeldt KS; Sepaniak MJ
    Appl Spectrosc; 2004 Oct; 58(10):1157-64. PubMed ID: 15527515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SERS not to be taken for granted in the presence of oxygen.
    Erol M; Han Y; Stanley SK; Stafford CM; Du H; Sukhishvili S
    J Am Chem Soc; 2009 Jun; 131(22):7480-1. PubMed ID: 19445502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microarray-based detection of dye-labeled DNA by SERRS using particles formed by enzymatic silver deposition.
    Hering KK; Möller R; Fritzsche W; Popp J
    Chemphyschem; 2008 Apr; 9(6):867-72. PubMed ID: 18386261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of the affinity of thermographic additives for silver by time-of-flight static secondary ion mass spectrometry and surface-enhanced Raman spectroscopy on silver nanoparticles.
    De Mondt R; Baert K; Geuens I; Van Vaeck L; Hubin A
    Langmuir; 2006 Dec; 22(26):11360-8. PubMed ID: 17154626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.