These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 18618916)

  • 1. Effects of intermolecular thiol-disulfide interchange reactions on bsa fouling during microfiltration.
    Kelly ST; Zydney AL
    Biotechnol Bioeng; 1994 Oct; 44(8):972-82. PubMed ID: 18618916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of added yeast on protein transmission and flux in cross-flow membrane microfiltration.
    Kuberkar VT; Davis RH
    Biotechnol Prog; 1999 May; 15(3):472-9. PubMed ID: 10356265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein fouling during microfiltration: comparative behavior of different model proteins.
    Kelly ST; Zydney AL
    Biotechnol Bioeng; 1997 Jul; 55(1):91-100. PubMed ID: 18636448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration.
    Ho CC; Zydney AL
    J Colloid Interface Sci; 2000 Dec; 232(2):389-399. PubMed ID: 11097775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fouling of nanofiltration, reverse osmosis, and ultrafiltration membranes by protein mixtures: the role of inter-foulant-species interaction.
    Wang YN; Tang CY
    Environ Sci Technol; 2011 Aug; 45(15):6373-9. PubMed ID: 21678956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane fouling by cell-protein mixtures: in situ characterisation using multi-photon microscopy.
    Hughes DJ; Cui Z; Field RW; Tirlapur UK
    Biotechnol Bioeng; 2007 Apr; 96(6):1083-91. PubMed ID: 16933334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a pore-blockage--cake-filtration model to protein fouling during microfiltration.
    Palacio L; Ho CC; Zydney AL
    Biotechnol Bioeng; 2002 Aug; 79(3):260-70. PubMed ID: 12115414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phospholipid coatings for the prevention of membrane fouling.
    Reuben BG; Perl O; Morgan NL; Stratford P; Dudley LY; Hawes C
    J Chem Technol Biotechnol; 1995 May; 63(1):85-91. PubMed ID: 7766404
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of bovine serum albumin aggregation during ultrafiltration.
    Maruyama T; Katoh S; Nakajima M; Nabetani H
    Biotechnol Bioeng; 2001 Oct; 75(2):233-8. PubMed ID: 11536147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein fouling behavior of carbon nanotube/polyethersulfone composite membranes during water filtration.
    Celik E; Liu L; Choi H
    Water Res; 2011 Oct; 45(16):5287-94. PubMed ID: 21862096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective precipitation-assisted recovery of immunoglobulins from bovine serum using controlled-fouling crossflow membrane microfiltration.
    Venkiteshwaran A; Heider P; Teysseyre L; Belfort G
    Biotechnol Bioeng; 2008 Dec; 101(5):957-66. PubMed ID: 18553503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of the Permeate Flux during Microfiltration of BSA-Adsorbed Microspheres in a Stirred Cell.
    Choi SW; Yoon JY; Haam S; Jung JK; Kim JH; Kim WS
    J Colloid Interface Sci; 2000 Aug; 228(2):270-278. PubMed ID: 10926466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and computational investigations of the interactions between model organic compounds and subsequent membrane fouling.
    Myat DT; Stewart MB; Mergen M; Zhao O; Orbell JD; Gray S
    Water Res; 2014 Jan; 48():108-18. PubMed ID: 24091191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane foulants and fouling mechanisms in microfiltration and ultrafiltration of an activated sludge effluent.
    Nguyen ST; Roddick FA; Harris JL
    Water Sci Technol; 2010; 62(9):1975-83. PubMed ID: 21045321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of membrane fouling by protein mixtures using MALDI-MS.
    Chan R; Chen V; Bucknall MP
    Biotechnol Bioeng; 2004 Jan; 85(2):190-201. PubMed ID: 14705002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Moisture-induced aggregation of lyophilized proteins in the solid state.
    Liu WR; Langer R; Klibanov AM
    Biotechnol Bioeng; 1991 Jan; 37(2):177-84. PubMed ID: 18597353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ three-dimensional characterization of membrane fouling by protein suspensions using multiphoton microscopy.
    Hughes DJ; Cui Z; Field RW; Tirlapur UK
    Langmuir; 2006 Jul; 22(14):6266-72. PubMed ID: 16800685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The significance of interactions between organic compounds on low pressure membrane fouling.
    Gray SR; Dow N; Orbell JD; Tran T; Bolto BA
    Water Sci Technol; 2011; 64(3):632-9. PubMed ID: 22097041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of membrane morphology on system capacity during normal flow microfiltration.
    Zydney AL; Ho CC
    Biotechnol Bioeng; 2003 Sep; 83(5):537-43. PubMed ID: 12827695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.