These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1149 related articles for article (PubMed ID: 18619434)
1. Natural genetic variation in acclimation capacity at sub-zero temperatures after cold acclimation at 4 degrees C in different Arabidopsis thaliana accessions. Le MQ; Engelsberger WR; Hincha DK Cryobiology; 2008 Oct; 57(2):104-12. PubMed ID: 18619434 [TBL] [Abstract][Full Text] [Related]
2. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. Zuther E; Schulz E; Childs LH; Hincha DK Plant Cell Environ; 2012 Oct; 35(10):1860-78. PubMed ID: 22512351 [TBL] [Abstract][Full Text] [Related]
3. Heterosis in the freezing tolerance of crosses between two Arabidopsis thaliana accessions (Columbia-0 and C24) that show differences in non-acclimated and acclimated freezing tolerance. Rohde P; Hincha DK; Heyer AG Plant J; 2004 Jun; 38(5):790-9. PubMed ID: 15144380 [TBL] [Abstract][Full Text] [Related]
4. Systemic low temperature signaling in Arabidopsis. Gorsuch PA; Sargeant AW; Penfield SD; Quick WP; Atkin OK Plant Cell Physiol; 2010 Sep; 51(9):1488-98. PubMed ID: 20813832 [TBL] [Abstract][Full Text] [Related]
5. Fitness benefits and costs of cold acclimation in Arabidopsis thaliana. Zhen Y; Dhakal P; Ungerer MC Am Nat; 2011 Jul; 178(1):44-52. PubMed ID: 21670576 [TBL] [Abstract][Full Text] [Related]
6. Light-quality regulation of freezing tolerance in Arabidopsis thaliana. Franklin KA; Whitelam GC Nat Genet; 2007 Nov; 39(11):1410-3. PubMed ID: 17965713 [TBL] [Abstract][Full Text] [Related]
7. Differential expression of the CBF pathway and cell cycle-related genes in Arabidopsis accessions in response to chronic low-temperature exposure. Lee YP; Fleming AJ; Körner Ch; Meins F Plant Biol (Stuttg); 2009 May; 11(3):273-83. PubMed ID: 19470100 [TBL] [Abstract][Full Text] [Related]
8. The role of raffinose in the cold acclimation response of Arabidopsis thaliana. Zuther E; Büchel K; Hundertmark M; Stitt M; Hincha DK; Heyer AG FEBS Lett; 2004 Oct; 576(1-2):169-73. PubMed ID: 15474032 [TBL] [Abstract][Full Text] [Related]
9. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Vogel JT; Zarka DG; Van Buskirk HA; Fowler SG; Thomashow MF Plant J; 2005 Jan; 41(2):195-211. PubMed ID: 15634197 [TBL] [Abstract][Full Text] [Related]
10. Relaxed selection on the CBF/DREB1 regulatory genes and reduced freezing tolerance in the southern range of Arabidopsis thaliana. Zhen Y; Ungerer MC Mol Biol Evol; 2008 Dec; 25(12):2547-55. PubMed ID: 18775899 [TBL] [Abstract][Full Text] [Related]
11. Identification of ICE2, a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Fursova OV; Pogorelko GV; Tarasov VA Gene; 2009 Jan; 429(1-2):98-103. PubMed ID: 19026725 [TBL] [Abstract][Full Text] [Related]
12. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. McKhann HI; Gery C; Bérard A; Lévêque S; Zuther E; Hincha DK; De Mita S; Brunel D; Téoulé E BMC Plant Biol; 2008 Oct; 8():105. PubMed ID: 18922165 [TBL] [Abstract][Full Text] [Related]
13. Differential remodeling of the lipidome during cold acclimation in natural accessions of Arabidopsis thaliana. Degenkolbe T; Giavalisco P; Zuther E; Seiwert B; Hincha DK; Willmitzer L Plant J; 2012 Dec; 72(6):972-82. PubMed ID: 23061922 [TBL] [Abstract][Full Text] [Related]
15. Arabidopsis HDA6 is required for freezing tolerance. To TK; Nakaminami K; Kim JM; Morosawa T; Ishida J; Tanaka M; Yokoyama S; Shinozaki K; Seki M Biochem Biophys Res Commun; 2011 Mar; 406(3):414-9. PubMed ID: 21329671 [TBL] [Abstract][Full Text] [Related]
16. Mapping quantitative trait loci for freezing tolerance in a recombinant inbred line population of Arabidopsis thaliana accessions Tenela and C24 reveals REVEILLE1 as negative regulator of cold acclimation. Meissner M; Orsini E; Ruschhaupt M; Melchinger AE; Hincha DK; Heyer AG Plant Cell Environ; 2013 Jul; 36(7):1256-67. PubMed ID: 23240770 [TBL] [Abstract][Full Text] [Related]
17. Arabidopsis thaliana avoids freezing by supercooling. Reyes-Díaz M; Ulloa N; Zúñiga-Feest A; Gutiérrez A; Gidekel M; Alberdi M; Corcuera LJ; Bravo LA J Exp Bot; 2006; 57(14):3687-96. PubMed ID: 16990371 [TBL] [Abstract][Full Text] [Related]
18. Global changes in gene expression, assayed by microarray hybridization and quantitative RT-PCR, during acclimation of three Arabidopsis thaliana accessions to sub-zero temperatures after cold acclimation. Le MQ; Pagter M; Hincha DK Plant Mol Biol; 2015 Jan; 87(1-2):1-15. PubMed ID: 25311197 [TBL] [Abstract][Full Text] [Related]
19. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Schulz E; Tohge T; Zuther E; Fernie AR; Hincha DK Plant Cell Environ; 2015 Aug; 38(8):1658-72. PubMed ID: 25689473 [TBL] [Abstract][Full Text] [Related]
20. Time-dependent deacclimation after cold acclimation in Arabidopsis thaliana accessions. Zuther E; Juszczak I; Lee YP; Baier M; Hincha DK Sci Rep; 2015 Jul; 5():12199. PubMed ID: 26174584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]