BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18619488)

  • 1. Docosahexaenoic acid may act as a neuroprotector for methylmercury-induced neurotoxicity in primary neural cell cultures.
    Kaur P; Heggland I; Aschner M; Syversen T
    Neurotoxicology; 2008 Nov; 29(6):978-87. PubMed ID: 18619488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione modulation influences methyl mercury induced neurotoxicity in primary cell cultures of neurons and astrocytes.
    Kaur P; Aschner M; Syversen T
    Neurotoxicology; 2006 Jul; 27(4):492-500. PubMed ID: 16513172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of docosahexaenoic acid in modulating methylmercury-induced neurotoxicity.
    Kaur P; Schulz K; Aschner M; Syversen T
    Toxicol Sci; 2007 Dec; 100(2):423-32. PubMed ID: 17728287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of glutathione in determining the differential sensitivity between the cortical and cerebellar regions towards mercury-induced oxidative stress.
    Kaur P; Aschner M; Syversen T
    Toxicology; 2007 Feb; 230(2-3):164-77. PubMed ID: 17169475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The in vitro effects of selenomethionine on methylmercury-induced neurotoxicity.
    Kaur P; Evje L; Aschner M; Syversen T
    Toxicol In Vitro; 2009 Apr; 23(3):378-85. PubMed ID: 19168124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulatory effect of glutathione status and antioxidants on methylmercury-induced free radical formation in primary cultures of cerebral astrocytes.
    Shanker G; Syversen T; Aschner JL; Aschner M
    Brain Res Mol Brain Res; 2005 Jun; 137(1-2):11-22. PubMed ID: 15950756
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DHA and Its Metabolites Have a Protective Role against Methylmercury-Induced Neurotoxicity in Mouse Primary Neuron and SH-SY5Y Cells.
    Oguro A; Fujita K; Ishihara Y; Yamamoto M; Yamazaki T
    Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33809931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of methylmercury on primary brain cells in mono- and co-culture.
    Morken TS; Sonnewald U; Aschner M; Syversen T
    Toxicol Sci; 2005 Sep; 87(1):169-75. PubMed ID: 15958655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of fluorescence for detecting MeHg-induced ROS in cell cultures.
    Kaur P; Schulz K; Heggland I; Aschner M; Syversen T
    Toxicol In Vitro; 2008 Aug; 22(5):1392-8. PubMed ID: 18343630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free radical formation in cerebral cortical astrocytes in culture induced by methylmercury.
    Shanker G; Aschner JL; Syversen T; Aschner M
    Brain Res Mol Brain Res; 2004 Sep; 128(1):48-57. PubMed ID: 15337317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome changes in methylmercury-exposed mouse primary cerebellar granule neurons and astrocytes.
    Shao Y; Wang L; Langlois P; Mironov G; Chan HM
    Toxicol In Vitro; 2019 Jun; 57():96-104. PubMed ID: 30776503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutathione-mediated neuroprotection against methylmercury neurotoxicity in cortical culture is dependent on MRP1.
    Rush T; Liu X; Nowakowski AB; Petering DH; Lobner D
    Neurotoxicology; 2012 Jun; 33(3):476-81. PubMed ID: 22464990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The in vitro effects of Trolox on methylmercury-induced neurotoxicity.
    Kaur P; Evje L; Aschner M; Syversen T
    Toxicology; 2010 Sep; 276(1):73-8. PubMed ID: 20637824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methylmercury induces oxidative injury, alterations in permeability and glutamine transport in cultured astrocytes.
    Yin Z; Milatovic D; Aschner JL; Syversen T; Rocha JB; Souza DO; Sidoryk M; Albrecht J; Aschner M
    Brain Res; 2007 Feb; 1131(1):1-10. PubMed ID: 17182013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methylmercury-induced reactive oxygen species formation in neonatal cerebral astrocytic cultures is attenuated by antioxidants.
    Shanker G; Aschner M
    Brain Res Mol Brain Res; 2003 Jan; 110(1):85-91. PubMed ID: 12573536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Docosahexaenoic acid enhances methylmercury-induced endoplasmic reticulum stress and cell death and eicosapentaenoic acid potentially attenuates these effects in mouse embryonic fibroblasts.
    Takanezawa Y; Nakamura R; Hamaguchi M; Yamamoto K; Sone Y; Uraguchi S; Kiyono M
    Toxicol Lett; 2019 May; 306():35-42. PubMed ID: 30769081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurotoxicity of Methylmercury in Isolated Astrocytes and Neurons: the Cytoskeleton as a Main Target.
    Pierozan P; Biasibetti H; Schmitz F; Ávila H; Fernandes CG; Pessoa-Pureur R; Wyse ATS
    Mol Neurobiol; 2017 Oct; 54(8):5752-5767. PubMed ID: 27660266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective effects of lycopene against methylmercury-induced neurotoxicity in cultured rat cerebellar granule neurons.
    Qu M; Nan X; Gao Z; Guo B; Liu B; Chen Z
    Brain Res; 2013 Dec; 1540():92-102. PubMed ID: 24120987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Astrocytic swelling, phospholipase A2, glutathione and glutamate: interactions in methylmercury-induced neurotoxicity.
    Aschner M
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):843-54. PubMed ID: 10875445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antioxidant compounds and Ca(2+) pathway blockers differentially protect against methylmercury and mercuric chloride neurotoxicity.
    Gassó S; Cristòfol RM; Selema G; Rosa R; Rodríguez-Farré E; Sanfeliu C
    J Neurosci Res; 2001 Oct; 66(1):135-45. PubMed ID: 11599010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.