BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 1861974)

  • 1. The htrM gene, whose product is essential for Escherichia coli viability only at elevated temperatures, is identical to the rfaD gene.
    Raina S; Georgopoulos C
    Nucleic Acids Res; 1991 Jul; 19(14):3811-9. PubMed ID: 1861974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex phenotypes of null mutations in the htr genes, whose products are essential for Escherichia coli growth at elevated temperatures.
    Karow M; Raina S; Georgopoulos C; Fayet O
    Res Microbiol; 1991; 142(2-3):289-94. PubMed ID: 1656498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Escherichia coli htrP gene product is essential for bacterial growth at high temperatures: mapping, cloning, sequencing, and transcriptional regulation of htrP.
    Raina S; Mabey L; Georgopoulos C
    J Bacteriol; 1991 Oct; 173(19):5999-6008. PubMed ID: 1917833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription of the mutL repair, miaA tRNA modification, hfq pleiotropic regulator, and hflA region protease genes of Escherichia coli K-12 from clustered Esigma32-specific promoters during heat shock.
    Tsui HC; Feng G; Winkler ME
    J Bacteriol; 1996 Oct; 178(19):5719-31. PubMed ID: 8824618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Escherichia coli heat shock gene htpY: mutational analysis, cloning, sequencing, and transcriptional regulation.
    Missiakas D; Georgopoulos C; Raina S
    J Bacteriol; 1993 May; 175(9):2613-24. PubMed ID: 8478327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The rpoE gene encoding the sigma E (sigma 24) heat shock sigma factor of Escherichia coli.
    Raina S; Missiakas D; Georgopoulos C
    EMBO J; 1995 Mar; 14(5):1043-55. PubMed ID: 7889935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, expression, and characterization of the Escherichia coli K-12 rfaD gene.
    Pegues JC; Chen LS; Gordon AW; Ding L; Coleman WG
    J Bacteriol; 1990 Aug; 172(8):4652-60. PubMed ID: 2198271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and transcriptional analysis of the Escherichia coli htrE operon which is homologous to pap and related pilin operons.
    Raina S; Missiakas D; Baird L; Kumar S; Georgopoulos C
    J Bacteriol; 1993 Aug; 175(16):5009-21. PubMed ID: 8102362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloning, expression, and characterization of the lon gene of Erwinia amylovora: evidence for a heat shock response.
    Eastgate JA; Taylor N; Coleman MJ; Healy B; Thompson L; Roberts IS
    J Bacteriol; 1995 Feb; 177(4):932-7. PubMed ID: 7860603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the promoters and transcripts of rpoH, the Escherichia coli heat shock regulatory gene.
    Erickson JW; Vaughn V; Walter WA; Neidhardt FC; Gross CA
    Genes Dev; 1987 Jul; 1(5):419-32. PubMed ID: 3315851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence analysis and regulation of the htrA gene of Escherichia coli: a sigma 32-independent mechanism of heat-inducible transcription.
    Lipinska B; Sharma S; Georgopoulos C
    Nucleic Acids Res; 1988 Nov; 16(21):10053-67. PubMed ID: 3057437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The bacteriophage T4 gene mrh whose product inhibits late T4 gene expression in an Escherichia coli rpoH (sigma 32) mutant.
    Frazier MW; Mosig G
    Gene; 1990 Mar; 88(1):7-14. PubMed ID: 1692800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequencing, mutational analysis, and transcriptional regulation of the Escherichia coli htrB gene.
    Karow M; Georgopoulos C
    Mol Microbiol; 1991 Sep; 5(9):2285-92. PubMed ID: 1840644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular analysis of the rfaD gene, for heptose synthesis, and the rfaF gene, for heptose transfer, in lipopolysaccharide synthesis in Salmonella typhimurium.
    Sirisena DM; MacLachlan PR; Liu SL; Hessel A; Sanderson KE
    J Bacteriol; 1994 Apr; 176(8):2379-85. PubMed ID: 8157607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel member of the cspA family of genes that is induced by cold shock in Escherichia coli.
    Nakashima K; Kanamaru K; Mizuno T; Horikoshi K
    J Bacteriol; 1996 May; 178(10):2994-7. PubMed ID: 8631696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new Escherichia coli heat shock gene, htrC, whose product is essential for viability only at high temperatures.
    Raina S; Georgopoulos C
    J Bacteriol; 1990 Jun; 172(6):3417-26. PubMed ID: 2160943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of ToxR, the transcriptional activator of the virulence factors in Vibrio cholerae, is modulated by the heat shock response.
    Parsot C; Mekalanos JJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(24):9898-902. PubMed ID: 2124707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cloning the gene for the heat shock response positive regulator (sigma 32 homolog) from Pseudomonas aeruginosa.
    Naczynski ZM; Mueller C; Kropinski AM
    Can J Microbiol; 1995 Jan; 41(1):75-87. PubMed ID: 7728657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heat shock response of murine Chlamydia trachomatis.
    Engel JN; Pollack J; Perara E; Ganem D
    J Bacteriol; 1990 Dec; 172(12):6959-72. PubMed ID: 2254267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Vibrio cholerae serogroup O1, rfaD is closely linked to the rfb operon.
    Stroeher UH; Karageorgos LE; Morona R; Manning PA
    Gene; 1995 Mar; 155(1):67-72. PubMed ID: 7698669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.