BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 18620049)

  • 1. The PAMPA technique as a HTS tool for partition coefficients determination in different solvent/water systems.
    Ottaviani G; Martel S; Escarala C; Nicolle E; Carrupt PA
    Eur J Pharm Sci; 2008 Sep; 35(1-2):68-75. PubMed ID: 18620049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico prediction of human oral absorption based on QSAR analyses of PAMPA permeability.
    Akamatsu M; Fujikawa M; Nakao K; Shimizu R
    Chem Biodivers; 2009 Nov; 6(11):1845-66. PubMed ID: 19937826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. QSAR study on permeability of hydrophobic compounds with artificial membranes.
    Fujikawa M; Nakao K; Shimizu R; Akamatsu M
    Bioorg Med Chem; 2007 Jun; 15(11):3756-67. PubMed ID: 17418579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel artificial membrane permeability assay (PAMPA) combined with a 10-day multiscreen Caco-2 cell culture as a tool for assessing new drug candidates.
    Masungi C; Mensch J; Van Dijck A; Borremans C; Willems B; Mackie C; Noppe M; Brewster ME
    Pharmazie; 2008 Mar; 63(3):194-9. PubMed ID: 18444507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of hydrophobic PVDF hollow fiber membranes for desalination through membrane distillation.
    Hou D; Wang J; Qu D; Luan Z; Zhao C; Ren X
    Water Sci Technol; 2009; 59(6):1219-26. PubMed ID: 19342819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PAMPA--a drug absorption in vitro model 8. Apparent filter porosity and the unstirred water layer.
    Nielsen PE; Avdeef A
    Eur J Pharm Sci; 2004 May; 22(1):33-41. PubMed ID: 15113581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrokinetic migration across artificial liquid membranes Tuning the membrane chemistry to different types of drug substances.
    Gjelstad A; Rasmussen KE; Pedersen-Bjergaard S
    J Chromatogr A; 2006 Aug; 1124(1-2):29-34. PubMed ID: 16696986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical study of a dendritic family at the water/1,2-dichloroethane interface.
    Calderon M; Monzón LM; Martinelli M; Juarez AV; Strumia MC; Yudi LM
    Langmuir; 2008 Jun; 24(12):6343-50. PubMed ID: 18491871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Permeation prediction of M100240 using the parallel artificial membrane permeability assay.
    Hwang KK; Martin NE; Jiang L; Zhu C
    J Pharm Pharm Sci; 2003; 6(3):315-20. PubMed ID: 14738711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic analysis of pH-dependent solubility and trans-membrane permeability of amphoteric compounds: application to sildenafil.
    Wang Y; Chow MS; Zuo Z
    Int J Pharm; 2008 Mar; 352(1-2):217-24. PubMed ID: 18068319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent dependence on conformational transition, dipole moment, and molecular geometry of 1,2-dichloroethane: insight from Car-Parrinello molecular dynamics calculations.
    Murugan NA; Hugosson HW; Agren H
    J Phys Chem B; 2008 Nov; 112(47):14673-7. PubMed ID: 18959438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ATR-FTIR spectroscopy and spectroscopic imaging of solvent and permeant diffusion across model membranes.
    McAuley WJ; Lad MD; Mader KT; Santos P; Tetteh J; Kazarian SG; Hadgraft J; Lane ME
    Eur J Pharm Biopharm; 2010 Feb; 74(2):413-9. PubMed ID: 19913613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of membrane-solvent-solute interactions on solute permeation in model membranes.
    Dias M; Hadgraft J; Lane ME
    Int J Pharm; 2007 May; 336(1):108-14. PubMed ID: 17204382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel artificial membrane permeability assay: a new membrane for the fast prediction of passive human skin permeability.
    Ottaviani G; Martel S; Carrupt PA
    J Med Chem; 2006 Jun; 49(13):3948-54. PubMed ID: 16789751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimisation of cosolvent concentration for topical drug delivery - II: influence of propylene glycol on ibuprofen permeation.
    Watkinson RM; Guy RH; Hadgraft J; Lane ME
    Skin Pharmacol Physiol; 2009; 22(4):225-30. PubMed ID: 19648784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A PAMPA study of the permeability-enhancing effect of new ceramide analogues.
    Sinkó B; Kökösi J; Avdeef A; Takács-Novák K
    Chem Biodivers; 2009 Nov; 6(11):1867-74. PubMed ID: 19937821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and evaluation of an in vitro method for prediction of human drug absorption II. Demonstration of the method suitability.
    Corti G; Maestrelli F; Cirri M; Zerrouk N; Mura P
    Eur J Pharm Sci; 2006 Mar; 27(4):354-62. PubMed ID: 16364612
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular origins of wettability of hydrophobic poly(vinylidene fluoride) microporous membranes on poly(vinyl alcohol) adsorption: Surface and interface analysis by XPS.
    Gholap SG; Badiger MV; Gopinath CS
    J Phys Chem B; 2005 Jul; 109(29):13941-7. PubMed ID: 16852749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes.
    Kansy M; Senner F; Gubernator K
    J Med Chem; 1998 Mar; 41(7):1007-10. PubMed ID: 9544199
    [No Abstract]   [Full Text] [Related]  

  • 20. Relationships between structure and high-throughput screening permeability of diverse drugs with artificial membranes: application to prediction of Caco-2 cell permeability.
    Fujikawa M; Ano R; Nakao K; Shimizu R; Akamatsu M
    Bioorg Med Chem; 2005 Aug; 13(15):4721-32. PubMed ID: 15936203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.