These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 18620842)
1. Markov random field-based clustering applied to the segmentation of masses in digital mammograms. Suliga M; Deklerck R; Nyssen E Comput Med Imaging Graph; 2008 Sep; 32(6):502-12. PubMed ID: 18620842 [TBL] [Abstract][Full Text] [Related]
2. A completely automated CAD system for mass detection in a large mammographic database. Bellotti R; De Carlo F; Tangaro S; Gargano G; Maggipinto G; Castellano M; Massafra R; Cascio D; Fauci F; Magro R; Raso G; Lauria A; Forni G; Bagnasco S; Cerello P; Zanon E; Cheran SC; Lopez Torres E; Bottigli U; Masala GL; Oliva P; Retico A; Fantacci ME; Cataldo R; De Mitri I; De Nunzio G Med Phys; 2006 Aug; 33(8):3066-75. PubMed ID: 16964885 [TBL] [Abstract][Full Text] [Related]
3. Detecting microcalcifications in digital mammograms using wavelet domain hidden Markov tree model. Regentova E; Zhang L; Zheng J; Veni G Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1972-5. PubMed ID: 17945686 [TBL] [Abstract][Full Text] [Related]
4. Steepest changes of a probability-based cost function for delineation of mammographic masses: a validation study. Kinnard L; Lo SC; Makariou E; Osicka T; Wang P; Chouikha MF; Freedman MT Med Phys; 2004 Oct; 31(10):2796-810. PubMed ID: 15543787 [TBL] [Abstract][Full Text] [Related]
5. A review of automatic mass detection and segmentation in mammographic images. Oliver A; Freixenet J; Martí J; Pérez E; Pont J; Denton ER; Zwiggelaar R Med Image Anal; 2010 Apr; 14(2):87-110. PubMed ID: 20071209 [TBL] [Abstract][Full Text] [Related]
6. Influence of using manual or automatic breast density information in a mass detection CAD system. Oliver A; Lladó X; Freixenet J; Martí R; Pérez E; Pont J; Zwiggelaar R Acad Radiol; 2010 Jul; 17(7):877-83. PubMed ID: 20540910 [TBL] [Abstract][Full Text] [Related]
7. Mammography segmentation with maximum likelihood active contours. Rahmati P; Adler A; Hamarneh G Med Image Anal; 2012 Aug; 16(6):1167-86. PubMed ID: 22831774 [TBL] [Abstract][Full Text] [Related]
8. A concentric morphology model for the detection of masses in mammography. Eltonsy NH; Tourassi GD; Elmaghraby AS IEEE Trans Med Imaging; 2007 Jun; 26(6):880-9. PubMed ID: 17679338 [TBL] [Abstract][Full Text] [Related]
9. An evaluation of contrast enhancement techniques for mammographic breast masses. Singh S; Bovis K IEEE Trans Inf Technol Biomed; 2005 Mar; 9(1):109-19. PubMed ID: 15787013 [TBL] [Abstract][Full Text] [Related]
10. Microcalcification detection based on wavelet domain hidden markov tree model: study for inclusion to computer aided diagnostic prompting system. Regentova E; Zhang L; Zheng J; Veni G Med Phys; 2007 Jun; 34(6):2206-19. PubMed ID: 17654922 [TBL] [Abstract][Full Text] [Related]
11. Computerized nipple identification for multiple image analysis in computer-aided diagnosis. Zhou C; Chan HP; Paramagul C; Roubidoux MA; Sahiner B; Hadjiiski LM; Petrick N Med Phys; 2004 Oct; 31(10):2871-82. PubMed ID: 15543797 [TBL] [Abstract][Full Text] [Related]
12. Hybrid segmentation of mass in mammograms using template matching and dynamic programming. Song E; Xu S; Xu X; Zeng J; Lan Y; Zhang S; Hung CC Acad Radiol; 2010 Nov; 17(11):1414-24. PubMed ID: 20817575 [TBL] [Abstract][Full Text] [Related]
13. Identification of the breast edge using areas enclosed by iso-intensity contours. Padayachee J; Alport MJ; Rae WI Comput Med Imaging Graph; 2007 Sep; 31(6):390-400. PubMed ID: 17398069 [TBL] [Abstract][Full Text] [Related]
14. Region-based wavelet coding methods for digital mammography. Penedo M; Pearlman WA; Tahoces PG; Souto M; Vidal JJ IEEE Trans Med Imaging; 2003 Oct; 22(10):1288-96. PubMed ID: 14552582 [TBL] [Abstract][Full Text] [Related]
15. Technique for preprocessing of digital mammogram. Maitra IK; Nag S; Bandyopadhyay SK Comput Methods Programs Biomed; 2012 Aug; 107(2):175-88. PubMed ID: 21669471 [TBL] [Abstract][Full Text] [Related]
16. Detection of breast masses in mammograms by density slicing and texture flow-field analysis. Mudigonda NR; Rangayyan RM; Desautels JE IEEE Trans Med Imaging; 2001 Dec; 20(12):1215-27. PubMed ID: 11811822 [TBL] [Abstract][Full Text] [Related]
17. Location of mammograms ROI's and reduction of false-positive. Salazar-Licea LA; Pedraza-Ortega JC; Pastrana-Palma A; Aceves-Fernandez MA Comput Methods Programs Biomed; 2017 May; 143():97-111. PubMed ID: 28391823 [TBL] [Abstract][Full Text] [Related]
18. Computerized detection of breast tissue asymmetry depicted on bilateral mammograms: a preliminary study of breast risk stratification. Wang X; Lederman D; Tan J; Wang XH; Zheng B Acad Radiol; 2010 Oct; 17(10):1234-41. PubMed ID: 20619697 [TBL] [Abstract][Full Text] [Related]
19. Characterization of architectural distortion in mammograms. Ayres FJ; Rangayyan RM IEEE Eng Med Biol Mag; 2005; 24(1):59-67. PubMed ID: 15709538 [No Abstract] [Full Text] [Related]
20. A similarity learning approach to content-based image retrieval: application to digital mammography. El-Naqa I; Yang Y; Galatsanos NP; Nishikawa RM; Wernick MN IEEE Trans Med Imaging; 2004 Oct; 23(10):1233-44. PubMed ID: 15493691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]