These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 18621022)

  • 1. HaloTag protein-mediated specific labeling of living cells with quantum dots.
    So MK; Yao H; Rao J
    Biochem Biophys Res Commun; 2008 Sep; 374(3):419-23. PubMed ID: 18621022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipid-Specific Labeling of Enveloped Viruses with Quantum Dots for Single-Virus Tracking.
    Zhang LJ; Wang S; Xia L; Lv C; Tang HW; Liang Z; Xiao G; Pang DW
    mBio; 2020 May; 11(3):. PubMed ID: 32430465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A two-photon excitation fluorescence cross-correlation assay for a model ligand-receptor binding system using quantum dots.
    Swift JL; Heuff R; Cramb DT
    Biophys J; 2006 Feb; 90(4):1396-410. PubMed ID: 16299079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Horseradish peroxidase-driven fluorescent labeling of nanotubes with quantum dots.
    Didenko VV; Baskin DS
    Biotechniques; 2006 Mar; 40(3):295-6, 298, 300-2. PubMed ID: 16568818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Labeling cell-surface proteins via antibody quantum dot streptavidin conjugates.
    Mason JN; Tomlinson ID; Rosenthal SJ; Blakely RD
    Methods Mol Biol; 2005; 303():35-50. PubMed ID: 15923673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ labelling chemistry of respiratory syncytial viruses by employing the biotinylated host-cell membrane protein for tracking the early stage of virus entry.
    Zheng LL; Yang XX; Liu Y; Wan XY; Wu WB; Wang TT; Wang Q; Zhen SJ; Huang CZ
    Chem Commun (Camb); 2014 Dec; 50(99):15776-9. PubMed ID: 25370508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme catalyzed site-specific protein labeling and cell imaging with quantum dots.
    Sunbul M; Yen M; Zou Y; Yin J
    Chem Commun (Camb); 2008 Dec; (45):5927-9. PubMed ID: 19030541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Measurement of GPCR Endocytosis via Pulse-Chase Covalent Labeling.
    Kumagai H; Ikeda Y; Motozawa Y; Fujishiro M; Okamura T; Fujio K; Okazaki H; Nomura S; Takeda N; Harada M; Toko H; Takimoto E; Akazawa H; Morita H; Suzuki J; Yamazaki T; Yamamoto K; Komuro I; Yanagisawa M
    PLoS One; 2015; 10(5):e0129394. PubMed ID: 26020647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotin-ligand complexes with streptavidin quantum dots for in vivo cell labeling of membrane receptors.
    Lidke DS; Nagy P; Jovin TM; Arndt-Jovin DJ
    Methods Mol Biol; 2007; 374():69-79. PubMed ID: 17237530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell surface biotinylation by azaelectrocyclization: easy-handling and versatile approach for living cell labeling.
    Tanaka K; Yokoi S; Morimoto K; Iwata T; Nakamoto Y; Nakayama K; Koyama K; Fujiwara T; Fukase K
    Bioorg Med Chem; 2012 Mar; 20(6):1865-8. PubMed ID: 22257530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotinylated-spiperone ligands for quantum dot labeling of the dopamine D2 receptor in live cell cultures.
    Tomlinson ID; Kovtun O; Crescentini TM; Rosenthal SJ
    Bioorg Med Chem Lett; 2019 Apr; 29(8):959-964. PubMed ID: 30808590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HaloTag technology for specific and covalent labeling of fusion proteins.
    Benink HA; Urh M
    Methods Mol Biol; 2015; 1266():119-28. PubMed ID: 25560071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking individual membrane proteins using quantum dots.
    Courty S; Dahan M
    Cold Spring Harb Protoc; 2013 Oct; 2013(10):925-7. PubMed ID: 24086060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-assembled quantum dot probe for detecting beta-lactamase activity.
    Xu C; Xing B; Rao J
    Biochem Biophys Res Commun; 2006 Jun; 344(3):931-5. PubMed ID: 16631595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthetic Approach to Biotinylated Glyco-Functionalized Quantum Dots: A New Fluorescent Probes for Biomedical Applications.
    Adokoh CK; Darkwa J; Narain R
    Methods Mol Biol; 2016; 1367():109-21. PubMed ID: 26537468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracking individual proteins in living cells using single quantum dot imaging.
    Courty S; Bouzigues C; Luccardini C; Ehrensperger MV; Bonneau S; Dahan M
    Methods Enzymol; 2006; 414():211-28. PubMed ID: 17110194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum dot encapsulated nanocolloidal bioconjugates function as bioprobes for in vitro intracellular imaging.
    Muralidhara S; Malu K; Gaines P; Budhlall BM
    Colloids Surf B Biointerfaces; 2019 Oct; 182():110348. PubMed ID: 31301579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly, characterization, and delivery of quantum dot labeled biotinylated lipid particles.
    Sigot V
    Methods Mol Biol; 2014; 1199():113-27. PubMed ID: 25103804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Choosing Fluorescent Probes and Labeling Systems.
    Jacoby-Morris K; Patterson GH
    Methods Mol Biol; 2021; 2304():37-64. PubMed ID: 34028710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized labeling of membrane proteins for applications to super-resolution imaging in confined cellular environments using monomeric streptavidin.
    Chamma I; Rossier O; Giannone G; Thoumine O; Sainlos M
    Nat Protoc; 2017 Apr; 12(4):748-763. PubMed ID: 28277548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.