BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

509 related articles for article (PubMed ID: 18621088)

  • 1. Frameshifting RNA pseudoknots: structure and mechanism.
    Giedroc DP; Cornish PV
    Virus Res; 2009 Feb; 139(2):193-208. PubMed ID: 18621088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses.
    Wang G; Yang Y; Huang X; Du Z
    J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A genome-wide analysis of RNA pseudoknots that stimulate efficient -1 ribosomal frameshifting or readthrough in animal viruses.
    Huang X; Cheng Q; Du Z
    Biomed Res Int; 2013; 2013():984028. PubMed ID: 24298557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting.
    Giedroc DP; Theimer CA; Nixon PL
    J Mol Biol; 2000 Apr; 298(2):167-85. PubMed ID: 10764589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots.
    Wu B; Zhang H; Sun R; Peng S; Cooperman BS; Goldman YE; Chen C
    Nucleic Acids Res; 2018 Oct; 46(18):9736-9748. PubMed ID: 30011005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus.
    Gao F; Simon AE
    Nucleic Acids Res; 2016 Jan; 44(2):878-95. PubMed ID: 26578603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly conserved RNA pseudoknots at the Gag-Pol junction of HIV-1 suggest a novel mechanism of -1 ribosomal frameshifting.
    Huang X; Yang Y; Wang G; Cheng Q; Du Z
    RNA; 2014 May; 20(5):587-93. PubMed ID: 24671765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting.
    Namy O; Moran SJ; Stuart DI; Gilbert RJ; Brierley I
    Nature; 2006 May; 441(7090):244-7. PubMed ID: 16688178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site.
    Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW
    RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events.
    Penn WD; Harrington HR; Schlebach JP; Mukhopadhyay S
    Annu Rev Virol; 2020 Sep; 7(1):219-238. PubMed ID: 32600156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Torsional restraint: a new twist on frameshifting pseudoknots.
    Plant EP; Dinman JD
    Nucleic Acids Res; 2005; 33(6):1825-33. PubMed ID: 15800212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing -1 programmed ribosomal frameshifting mechanisms by single-molecule techniques and computational methods.
    Chang KC
    Comput Math Methods Med; 2012; 2012():569870. PubMed ID: 22545064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting.
    Michiels PJ; Versleijen AA; Verlaan PW; Pleij CW; Hilbers CW; Heus HA
    J Mol Biol; 2001 Jul; 310(5):1109-23. PubMed ID: 11501999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting.
    Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE
    EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of the HIV-1 frameshift signal with the ribosome.
    Mazauric MH; Seol Y; Yoshizawa S; Visscher K; Fourmy D
    Nucleic Acids Res; 2009 Dec; 37(22):7654-64. PubMed ID: 19812214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome.
    Bhatt PR; Scaiola A; Loughran G; Leibundgut M; Kratzel A; Meurs R; Dreos R; O'Connor KM; McMillan A; Bode JW; Thiel V; Gatfield D; Atkins JF; Ban N
    Science; 2021 Jun; 372(6548):1306-1313. PubMed ID: 34029205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Footprinting analysis of BWYV pseudoknot-ribosome complexes.
    Mazauric MH; Leroy JL; Visscher K; Yoshizawa S; Fourmy D
    RNA; 2009 Sep; 15(9):1775-86. PubMed ID: 19625386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A loop 2 cytidine-stem 1 minor groove interaction as a positive determinant for pseudoknot-stimulated -1 ribosomal frameshifting.
    Cornish PV; Hennig M; Giedroc DP
    Proc Natl Acad Sci U S A; 2005 Sep; 102(36):12694-9. PubMed ID: 16123125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and Functional Insights into Viral Programmed Ribosomal Frameshifting.
    Hill CH; Brierley I
    Annu Rev Virol; 2023 Sep; 10(1):217-242. PubMed ID: 37339768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.