These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses. Wang G; Yang Y; Huang X; Du Z J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560 [TBL] [Abstract][Full Text] [Related]
3. A genome-wide analysis of RNA pseudoknots that stimulate efficient -1 ribosomal frameshifting or readthrough in animal viruses. Huang X; Cheng Q; Du Z Biomed Res Int; 2013; 2013():984028. PubMed ID: 24298557 [TBL] [Abstract][Full Text] [Related]
4. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. Giedroc DP; Theimer CA; Nixon PL J Mol Biol; 2000 Apr; 298(2):167-85. PubMed ID: 10764589 [TBL] [Abstract][Full Text] [Related]
5. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting. Hansen TM; Reihani SN; Oddershede LB; Sørensen MA Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398 [TBL] [Abstract][Full Text] [Related]
6. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots. Wu B; Zhang H; Sun R; Peng S; Cooperman BS; Goldman YE; Chen C Nucleic Acids Res; 2018 Oct; 46(18):9736-9748. PubMed ID: 30011005 [TBL] [Abstract][Full Text] [Related]
7. Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus. Gao F; Simon AE Nucleic Acids Res; 2016 Jan; 44(2):878-95. PubMed ID: 26578603 [TBL] [Abstract][Full Text] [Related]
8. Highly conserved RNA pseudoknots at the Gag-Pol junction of HIV-1 suggest a novel mechanism of -1 ribosomal frameshifting. Huang X; Yang Y; Wang G; Cheng Q; Du Z RNA; 2014 May; 20(5):587-93. PubMed ID: 24671765 [TBL] [Abstract][Full Text] [Related]
9. A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Namy O; Moran SJ; Stuart DI; Gilbert RJ; Brierley I Nature; 2006 May; 441(7090):244-7. PubMed ID: 16688178 [TBL] [Abstract][Full Text] [Related]
10. Comparative studies of frameshifting and nonframeshifting RNA pseudoknots: a mutational and NMR investigation of pseudoknots derived from the bacteriophage T2 gene 32 mRNA and the retroviral gag-pro frameshift site. Wang Y; Wills NM; Du Z; Rangan A; Atkins JF; Gesteland RF; Hoffman DW RNA; 2002 Aug; 8(8):981-96. PubMed ID: 12212853 [TBL] [Abstract][Full Text] [Related]
11. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events. Penn WD; Harrington HR; Schlebach JP; Mukhopadhyay S Annu Rev Virol; 2020 Sep; 7(1):219-238. PubMed ID: 32600156 [TBL] [Abstract][Full Text] [Related]
12. Torsional restraint: a new twist on frameshifting pseudoknots. Plant EP; Dinman JD Nucleic Acids Res; 2005; 33(6):1825-33. PubMed ID: 15800212 [TBL] [Abstract][Full Text] [Related]
13. Revealing -1 programmed ribosomal frameshifting mechanisms by single-molecule techniques and computational methods. Chang KC Comput Math Methods Med; 2012; 2012():569870. PubMed ID: 22545064 [TBL] [Abstract][Full Text] [Related]
14. Solution structure of the pseudoknot of SRV-1 RNA, involved in ribosomal frameshifting. Michiels PJ; Versleijen AA; Verlaan PW; Pleij CW; Hilbers CW; Heus HA J Mol Biol; 2001 Jul; 310(5):1109-23. PubMed ID: 11501999 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional studies of retroviral RNA pseudoknots involved in ribosomal frameshifting: nucleotides at the junction of the two stems are important for efficient ribosomal frameshifting. Chen X; Chamorro M; Lee SI; Shen LX; Hines JV; Tinoco I; Varmus HE EMBO J; 1995 Feb; 14(4):842-52. PubMed ID: 7882986 [TBL] [Abstract][Full Text] [Related]
16. Interaction of the HIV-1 frameshift signal with the ribosome. Mazauric MH; Seol Y; Yoshizawa S; Visscher K; Fourmy D Nucleic Acids Res; 2009 Dec; 37(22):7654-64. PubMed ID: 19812214 [TBL] [Abstract][Full Text] [Related]
17. Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Bhatt PR; Scaiola A; Loughran G; Leibundgut M; Kratzel A; Meurs R; Dreos R; O'Connor KM; McMillan A; Bode JW; Thiel V; Gatfield D; Atkins JF; Ban N Science; 2021 Jun; 372(6548):1306-1313. PubMed ID: 34029205 [TBL] [Abstract][Full Text] [Related]