These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 18621380)

  • 21. Water motion and movement without sticking, weight loss and cross-contaminant in superhydrophobic glass tube.
    Yuan JJ; Jin RH
    Nanotechnology; 2010 Feb; 21(6):065704. PubMed ID: 20057021
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anticorrosion Superhydrophobic Surfaces on AA6082 Aluminum Alloy by HF/HCl Texturing and Self-Assembling of Silane Monolayer.
    Khaskhoussi A; Calabrese L; Proverbio E
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36500045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Facile preparation of poly(ethyl alpha-cyanoacrylate) superhydrophobic and gradient wetting surfaces.
    Li X; Dai H; Tan S; Zhang X; Liu H; Wang Y; Zhao N; Xu J
    J Colloid Interface Sci; 2009 Dec; 340(1):93-7. PubMed ID: 19744667
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Micro and nano-texturization of intermetallic oxide alloys by a single anodization step: preparation of artificial self-cleaning surfaces.
    Feil AF; Weibel DE; Corsetti RR; Pierozan MD; Michels AF; Horowitz F; Amaral L; Teixeira SR
    ACS Appl Mater Interfaces; 2011 Oct; 3(10):3981-7. PubMed ID: 21919435
    [TBL] [Abstract][Full Text] [Related]  

  • 25. What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces.
    Li XM; Reinhoudt D; Crego-Calama M
    Chem Soc Rev; 2007 Aug; 36(8):1350-68. PubMed ID: 17619692
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A conventional route to scalable morphology-controlled regular structures and their superhydrophobic/hydrophilic properties for biochips application.
    Ren HX; Chen X; Huang XJ; Im M; Kim DH; Lee JH; Yoon JB; Gu N; Liu JH; Choi YK
    Lab Chip; 2009 Aug; 9(15):2140-4. PubMed ID: 19606289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Superhydrophobic and low light reflectivity silicon surfaces fabricated by hierarchical etching.
    Xiu Y; Zhang S; Yelundur V; Rohatgi A; Hess DW; Wong CP
    Langmuir; 2008 Sep; 24(18):10421-6. PubMed ID: 18710271
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates.
    Qian B; Shen Z
    Langmuir; 2005 Sep; 21(20):9007-9. PubMed ID: 16171323
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A survey of some metallographic etching reagents for restoration of obliterated engraved marks on aluminium-silicon alloy surfaces.
    Uli N; Kuppuswamy R; Amran MF
    Forensic Sci Int; 2011 May; 208(1-3):66-73. PubMed ID: 21145675
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption-driven surface segregation of the less reactive alloy component.
    Andersson KJ; Calle-Vallejo F; Rossmeisl J; Chorkendorff I
    J Am Chem Soc; 2009 Feb; 131(6):2404-7. PubMed ID: 19166291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of large-scale hierarchical ZnO hollow spheroids for hydrophobicity and photocatalysis.
    Sinha AK; Basu M; Pradhan M; Sarkar S; Pal T
    Chemistry; 2010 Jul; 16(26):7865-74. PubMed ID: 20496353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Revealing obliterated engraved marks on high strength aluminium alloy (AA7010) surfaces by etching technique.
    Bong YU; Kuppuswamy R
    Forensic Sci Int; 2010 Feb; 195(1-3):86-92. PubMed ID: 20022189
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of "roll-off" and "sticky" superhydrophobic cellulose surfaces via plasma processing.
    Balu B; Breedveld V; Hess DW
    Langmuir; 2008 May; 24(9):4785-90. PubMed ID: 18315020
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of superhydrophobic surfaces with hierarchical structure through a solution-immersion process on copper and galvanized iron substrates.
    Xu W; Liu H; Lu S; Xi J; Wang Y
    Langmuir; 2008 Oct; 24(19):10895-900. PubMed ID: 18774835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methodology for robust superhydrophobic fabrics and sponges from in situ growth of transition metal/metal oxide nanocrystals with thiol modification and their applications in oil/water separation.
    Wang B; Li J; Wang G; Liang W; Zhang Y; Shi L; Guo Z; Liu W
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1827-39. PubMed ID: 23388070
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods.
    Vilaró I; Yagüe JL; Borrós S
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):1057-1065. PubMed ID: 27977129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of perpendicular nanorod arrays with hierarchical architecture and water slipping superhydrophobic properties.
    Bok HM; Kim S; Yoo SH; Kim SK; Park S
    Langmuir; 2008 Apr; 24(8):4168-73. PubMed ID: 18312003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Recent advances in designing superhydrophobic surfaces.
    Celia E; Darmanin T; Taffin de Givenchy E; Amigoni S; Guittard F
    J Colloid Interface Sci; 2013 Jul; 402():1-18. PubMed ID: 23647693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile approach in fabricating superhydrophobic and superoleophilic surface for water and oil mixture separation.
    Wang C; Yao T; Wu J; Ma C; Fan Z; Wang Z; Cheng Y; Lin Q; Yang B
    ACS Appl Mater Interfaces; 2009 Nov; 1(11):2613-7. PubMed ID: 20356134
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption/desorption of H2 and CO on Zn-modified Pd(111).
    Tamtögl A; Kratzer M; Killman J; Winkler A
    J Chem Phys; 2008 Dec; 129(22):224706. PubMed ID: 19071938
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.