These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
102 related articles for article (PubMed ID: 18621478)
1. Identification of sustainable flux in the process of using flat-sheet membrane for simultaneous thickening and digestion of waste activated sludge. Wu Z; Wang X; Wang Z; Du X J Hazard Mater; 2009 Mar; 162(2-3):1397-403. PubMed ID: 18621478 [TBL] [Abstract][Full Text] [Related]
2. Floc destruction and its impact on dewatering properties in the process of using flat-sheet membrane for simultaneous thickening and digestion of waste activated sludge. Wang X; Wu Z; Wang Z; Yin X; Du X Bioresour Technol; 2009 Mar; 100(6):1937-42. PubMed ID: 19038542 [TBL] [Abstract][Full Text] [Related]
3. Application of flat-sheet membrane to thickening and digestion of waste activated sludge (WAS). Wang Z; Wu Z; Hua J; Wang X; Du X; Hua H J Hazard Mater; 2008 Jun; 154(1-3):535-42. PubMed ID: 18037239 [TBL] [Abstract][Full Text] [Related]
4. Influence of mixed liquor properties and aeration intensity on membrane fouling in a submerged membrane bioreactor at high mixed liquor suspended solids concentrations. Trussell RS; Merlo RP; Hermanowicz SW; Jenkins D Water Res; 2007 Mar; 41(5):947-58. PubMed ID: 17239918 [TBL] [Abstract][Full Text] [Related]
5. Identification of wastewater sludge characteristics to predict critical flux for membrane bioreactor processes. Fan F; Zhou H; Husain H Water Res; 2006 Jan; 40(2):205-12. PubMed ID: 16360725 [TBL] [Abstract][Full Text] [Related]
6. Relationships of activated sludge characteristics to fouling rate and critical flux in membrane bioreactors for wastewater treatment. Farquharson A; Zhou H Chemosphere; 2010 Mar; 79(2):149-55. PubMed ID: 20122711 [TBL] [Abstract][Full Text] [Related]
7. Comparative investigation on the impact of polymeric substances on membrane fouling during sub-critical and critical flux operation of a municipal membrane bioreactor. Lyko S; Wintgens T; Melin T Water Sci Technol; 2008; 58(9):1849-55. PubMed ID: 19029728 [TBL] [Abstract][Full Text] [Related]
8. Oxygen transfer in membrane bioreactors treating synthetic greywater. Henkel J; Lemac M; Wagner M; Cornel P Water Res; 2009 Apr; 43(6):1711-9. PubMed ID: 19217638 [TBL] [Abstract][Full Text] [Related]
9. A comparative study of fouling-related properties of sludge from conventional and membrane enhanced biological phosphorus removal processes. Geng Z; Hall ER Water Res; 2007 Nov; 41(19):4329-38. PubMed ID: 17697695 [TBL] [Abstract][Full Text] [Related]
10. Characteristics of membrane fouling in submerged membrane bioreactor under sub-critical flux operation. Su YC; Huang CP; Pan JR; Lee HC Water Sci Technol; 2008; 57(4):601-5. PubMed ID: 18360002 [TBL] [Abstract][Full Text] [Related]
11. Simulation and assessment of sludge concentration and rheology in the process of waste activated sludge treatment. Xia M; Wang Z; Wu Z; Wang X; Zhou Z; Lu J J Environ Sci (China); 2009; 21(12):1639-45. PubMed ID: 20131592 [TBL] [Abstract][Full Text] [Related]
12. Biomass effects on oxygen transfer in membrane bioreactors. Germain E; Nelles F; Drews A; Pearce P; Kraume M; Reid E; Judd SJ; Stephenson T Water Res; 2007 Mar; 41(5):1038-44. PubMed ID: 17217981 [TBL] [Abstract][Full Text] [Related]
13. Physical characteristics of the sludge in a complete retention membrane bioreactor. Pollice A; Giordano C; Laera G; Saturno D; Mininni G Water Res; 2007 Apr; 41(8):1832-40. PubMed ID: 17324447 [TBL] [Abstract][Full Text] [Related]
14. New insights on destruction mechanisms of waste activated sludge during simultaneous thickening and digestion process via forward osmosis membrane. Yi X; Wang Z; Zhao P; Song W; Wang X Water Res; 2024 May; 254():121378. PubMed ID: 38430758 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of applying forward osmosis to the simultaneous thickening, digestion, and direct dewatering of waste activated sludge. Zhu H; Zhang L; Wen X; Huang X Bioresour Technol; 2012 Jun; 113():207-13. PubMed ID: 22209406 [TBL] [Abstract][Full Text] [Related]
16. Correlation of EPS content in activated sludge at different sludge retention times with membrane fouling phenomena. Al-Halbouni D; Traber J; Lyko S; Wintgens T; Melin T; Tacke D; Janot A; Dott W; Hollender J Water Res; 2008 Mar; 42(6-7):1475-88. PubMed ID: 18023465 [TBL] [Abstract][Full Text] [Related]
17. Impact of chemical cleaning and air-sparging on the critical and sustainable flux in a flat sheet membrane bioreactor for municipal wastewater treatment. Guglielmi G; Chiarani D; Saroj DP; Andreottola G Water Sci Technol; 2008; 57(12):1873-9. PubMed ID: 18587173 [TBL] [Abstract][Full Text] [Related]
18. Minimization of sludge production and stable operational condition of a submerged membrane activated sludge process. Bhatta CP; Matsuda A; Kawasaki K; Omori D Water Sci Technol; 2004; 50(9):121-8. PubMed ID: 15581003 [TBL] [Abstract][Full Text] [Related]
19. Soluble microbial products (SMP) and soluble extracellular polymeric substances (EPS) from wastewater sludge. Ramesh A; Lee DJ; Hong SG Appl Microbiol Biotechnol; 2006 Nov; 73(1):219-25. PubMed ID: 16791591 [TBL] [Abstract][Full Text] [Related]
20. Temporal variations of membrane foulants in the process of using flat-sheet membrane for simultaneous thickening and digestion of waste activated sludge. Wu Z; Zhu X; Wang Z Bioresour Technol; 2011 Jul; 102(13):6863-9. PubMed ID: 21555218 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]