These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18621480)

  • 21. Biogenic FeS accelerates reductive dechlorination of carbon tetrachloride by Shewanella putrefaciens CN32.
    Huo YC; Li WW; Chen CB; Li CX; Zeng R; Lau TC; Huang TY
    Enzyme Microb Technol; 2016 Dec; 95():236-241. PubMed ID: 27866621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bio-reductive dechlorination of 1,1,1-trichloroethane and chloroform using a hydrogen-based membrane biofilm reactor.
    Chung J; Rittmann BE
    Biotechnol Bioeng; 2007 May; 97(1):52-60. PubMed ID: 17013934
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of 1,1,1-trichloroethane transformation by iron sulfide and a methanogenic consortium.
    Gander JW; Parkin GF; Scherer MM
    Environ Sci Technol; 2002 Nov; 36(21):4540-6. PubMed ID: 12433162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of iron-bearing phyllosilicates on the dechlorination kinetics of 1,1,1-trichloroethane in Fe(II)/cement slurries.
    Jung B; Batchelor B
    Chemosphere; 2007 Jul; 68(7):1254-61. PubMed ID: 17368506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pH dependence of carbon tetrachloride reductive dechlorination by magnetite.
    Danielsen KM; Hayes KF
    Environ Sci Technol; 2004 Sep; 38(18):4745-52. PubMed ID: 15487782
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn.
    Feng J; Lim TT
    Chemosphere; 2005 Jun; 59(9):1267-77. PubMed ID: 15857638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of dechlorination kinetics of chlorinated aliphatic hydrocarbons by Fe(II) in cement slurries.
    Jung B; Batchelor B
    J Hazard Mater; 2008 Mar; 152(1):62-70. PubMed ID: 17707584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Understanding reduction of carbon tetrachloride at nickel surfaces.
    Wang J; Blowers P; Farrell J
    Environ Sci Technol; 2004 Mar; 38(5):1576-81. PubMed ID: 15046362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transformation of carbon tetrachloride by bisulfide treated goethite, hematite, magnetite, and kaolinite.
    Hanoch RJ; Shao H; Butler EC
    Chemosphere; 2006 Apr; 63(2):323-34. PubMed ID: 16154172
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of biogenic iron species and copper ions on the reduction of carbon tetrachloride under iron-reducing conditions.
    Maithreepala RA; Doong RA
    Chemosphere; 2008 Feb; 70(8):1405-13. PubMed ID: 17963818
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Abiotic reductive dechlorination of chlorinated ethylenes by iron-bearing phyllosilicates.
    Lee W; Batchelor B
    Chemosphere; 2004 Sep; 56(10):999-1009. PubMed ID: 15268967
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron.
    Doong RA; Lai YL
    Chemosphere; 2006 Jun; 64(3):371-8. PubMed ID: 16466778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic dechlorination of monochlorobenzene with a new type of nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant.
    Han Y; Li W; Zhang M; Tao K
    Chemosphere; 2008 May; 72(1):53-8. PubMed ID: 18378276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantifying the effects of 1,1,1-trichloroethane and 1,1-dichloroethane on chlorinated ethene reductive dehalogenases.
    Chan WW; Grostern A; Löffler FE; Edwards EA
    Environ Sci Technol; 2011 Nov; 45(22):9693-702. PubMed ID: 21955221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles.
    Kim EJ; Kim JH; Chang YS; Turcio-Ortega D; Tratnyek PG
    Environ Sci Technol; 2014 Apr; 48(7):4002-11. PubMed ID: 24579799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercalated with dodecanoate anions.
    Ayala-Luis KB; Cooper NG; Koch CB; Hansen HC
    Environ Sci Technol; 2012 Mar; 46(6):3390-7. PubMed ID: 22360442
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immobilization of bimetallic nanoparticles on microfiltration membranes for trichloroethylene dechlorination.
    Parshetti GK; Doong RA
    Water Sci Technol; 2008; 58(8):1629-36. PubMed ID: 19001718
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron.
    Cong X; Xue N; Wang S; Li K; Li F
    Sci Total Environ; 2010 Jul; 408(16):3418-23. PubMed ID: 20471666
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Well-defined nanoporous palladium for electrochemical reductive dechlorination.
    Li W; Ma H; Huang L; Ding Y
    Phys Chem Chem Phys; 2011 Apr; 13(13):5565-8. PubMed ID: 21340053
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics of transformation of 1,1,1-trichloroethane by Fe(II) in cement slurries.
    Jung B; Batchelor B
    J Hazard Mater; 2009 Apr; 163(2-3):1315-21. PubMed ID: 18804328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.