These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18621589)

  • 1. Effects of cell orientation and electric field frequency on the transmembrane potential induced in ellipsoidal cells.
    Maswiwat K; Wachner D; Gimsa J
    Bioelectrochemistry; 2008 Nov; 74(1):130-41. PubMed ID: 18621589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis.
    Valic B; Pavlin M; Miklavcic D
    Bioelectrochemistry; 2004 Jun; 63(1-2):311-5. PubMed ID: 15110294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the efficiency of cell membrane electroporation using pulsed ac fields.
    Chen C; Evans JA; Robinson MP; Smye SW; O'Toole P
    Phys Med Biol; 2008 Sep; 53(17):4747-57. PubMed ID: 18701769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transmembrane voltage induced on a cell membrane in suspensions exposed to an alternating field: a theoretical analysis.
    Qin Y; Lai S; Jiang Y; Yang T; Wang J
    Bioelectrochemistry; 2005 Sep; 67(1):57-65. PubMed ID: 15967401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear changes of transmembrane potential during electrical shocks: role of membrane electroporation.
    Cheek ER; Fast VG
    Circ Res; 2004 Feb; 94(2):208-14. PubMed ID: 14670844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells.
    Pucihar G; Miklavcic D; Kotnik T
    IEEE Trans Biomed Eng; 2009 May; 56(5):1491-501. PubMed ID: 19203876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analytical model for the transmembrane voltage induced on a permeabilized cell membrane in suspensions exposed to DC pulse fields].
    Qin Y; Jiang Y; Lai S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):1-4. PubMed ID: 17333880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osmotically induced membrane tension facilitates the triggering of living cell electropermeabilization.
    Barrau C; Teissié J; Gabriel B
    Bioelectrochemistry; 2004 Jun; 63(1-2):327-32. PubMed ID: 15110297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures.
    Krueger M; Thom F
    Biophys J; 1997 Nov; 73(5):2653-66. PubMed ID: 9370459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of moderate electric field frequency and growth stage on the cell membrane permeability of Lactobacillus acidophilus.
    Loghavi L; Sastry SK; Yousef AE
    Biotechnol Prog; 2009; 25(1):85-94. PubMed ID: 19224558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroporation of cells using EM induction of ac fields by a magnetic stimulator.
    Chen C; Evans JA; Robinson MP; Smye SW; O'Toole P
    Phys Med Biol; 2010 Feb; 55(4):1219-29. PubMed ID: 20124654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Permeabilization of tumor cells induced by pulsed electric fields in vitro].
    Andriianov IuV; Andriianova ON; Golovanov MV; Dobrynin IaV; Kozodoĭ PV; Smirnov VP
    Biofizika; 2002; 47(3):524-30. PubMed ID: 12068611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the internal field distribution in human erythrocytes exposed to MW radiation.
    Sebastián JL; Muñoz San Martín S; Sancho M; Miranda JM
    Bioelectrochemistry; 2004 Aug; 64(1):39-45. PubMed ID: 15219245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells.
    Gimsa J; Wachner D
    Biophys J; 2001 Oct; 81(4):1888-96. PubMed ID: 11566763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical modelling of electroporation in close cell-to-cell proximity environments.
    Gaynor PT; Bodger PS
    Phys Med Biol; 2006 Jun; 51(12):3175-88. PubMed ID: 16757870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment.
    Valic B; Golzio M; Pavlin M; Schatz A; Faurie C; Gabriel B; Teissié J; Rols MP; Miklavcic D
    Eur Biophys J; 2003 Sep; 32(6):519-28. PubMed ID: 12712266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of intense, subnanosecond electrical pulse-induced transmembrane voltage in spheroidal cells with arbitrary orientation.
    Hu Q; Joshi RP
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1617-26. PubMed ID: 19258194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroconformational denaturation of membrane proteins.
    Chen W
    Ann N Y Acad Sci; 2005 Dec; 1066():92-105. PubMed ID: 16533921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lethal effect of electric fields on isolated ventricular myocytes.
    de Oliveira PX; Bassani RA; Bassani JW
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2635-42. PubMed ID: 18990634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electric field distribution and energy absorption in anisotropic and dispersive red blood cells.
    Sebastián JL; Muñoz S; Sancho M; Alvarez G; Miranda JM
    Phys Med Biol; 2007 Dec; 52(23):6831-47. PubMed ID: 18029978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.