These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18621814)

  • 1. Pressure effects on the ensemble dynamics of ubiquitin inspected with molecular dynamics simulations and isotropic reorientational eigenmode dynamics.
    Sgourakis NG; Day R; McCallum SA; Garcia AE
    Biophys J; 2008 Oct; 95(8):3943-55. PubMed ID: 18621814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General framework for studying the dynamics of folded and nonfolded proteins by NMR relaxation spectroscopy and MD simulation.
    Prompers JJ; Brüschweiler R
    J Am Chem Soc; 2002 Apr; 124(16):4522-34. PubMed ID: 11960483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isotropic reorientational eigenmode dynamics complements NMR relaxation measurements for RNA.
    Showalter SA; Hall KB
    Methods Enzymol; 2005; 394():465-80. PubMed ID: 15808233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of NMR relaxation-active motions of a partially folded A-state analogue of ubiquitin.
    Prompers JJ; Scheurer C; Brüschweiler R
    J Mol Biol; 2001 Feb; 305(5):1085-97. PubMed ID: 11162116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reorientational eigenmode dynamics: a combined MD/NMR relaxation analysis method for flexible parts in globular proteins.
    Prompers JJ; Brüschweiler R
    J Am Chem Soc; 2001 Aug; 123(30):7305-13. PubMed ID: 11472158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reorientational contact-weighted elastic network model for the prediction of protein dynamics: comparison with NMR relaxation.
    Ming D; Brüschweiler R
    Biophys J; 2006 May; 90(10):3382-8. PubMed ID: 16500967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron responsive element RNA flexibility described by NMR and isotropic reorientational eigenmode dynamics.
    Showalter SA; Baker NA; Tang C; Hall KB
    J Biomol NMR; 2005 Jul; 32(3):179-93. PubMed ID: 16132819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme dynamics from NMR spectroscopy.
    Palmer AG
    Acc Chem Res; 2015 Feb; 48(2):457-65. PubMed ID: 25574774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two folded conformers of ubiquitin revealed by high-pressure NMR.
    Kitahara R; Yamada H; Akasaka K
    Biochemistry; 2001 Nov; 40(45):13556-63. PubMed ID: 11695903
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble MD simulations restrained via crystallographic data: accurate structure leads to accurate dynamics.
    Xue Y; Skrynnikov NR
    Protein Sci; 2014 Apr; 23(4):488-507. PubMed ID: 24452989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the internal motions of Escherichia coli ribonuclease HI by a combination of 15N-NMR relaxation analysis and molecular dynamics simulation: examination of dynamic models.
    Yamasaki K; Saito M; Oobatake M; Kanaya S
    Biochemistry; 1995 May; 34(20):6587-601. PubMed ID: 7756290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temperature dependence of anisotropic protein backbone dynamics.
    Wang T; Cai S; Zuiderweg ER
    J Am Chem Soc; 2003 Jul; 125(28):8639-43. PubMed ID: 12848571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motions and entropies in proteins as seen in NMR relaxation experiments and molecular dynamics simulations.
    Allnér O; Foloppe N; Nilsson L
    J Phys Chem B; 2015 Jan; 119(3):1114-28. PubMed ID: 25350574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The main-chain dynamics of the dynamin pleckstrin homology (PH) domain in solution: analysis of 15N relaxation with monomer/dimer equilibration.
    Fushman D; Cahill S; Cowburn D
    J Mol Biol; 1997 Feb; 266(1):173-94. PubMed ID: 9054979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of CMAP and electrostatic cutoffs on the dynamics of an integral membrane protein: the phospholamban study.
    Houndonougbo Y; Kuczera K; Jas GS
    J Biomol Struct Dyn; 2008 Aug; 26(1):17-34. PubMed ID: 18533723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of protein backbone dynamics in microcrystalline ubiquitin by solid-state NMR spectroscopy.
    Schanda P; Meier BH; Ernst M
    J Am Chem Soc; 2010 Nov; 132(45):15957-67. PubMed ID: 20977205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of the GB3 loop regions from MD simulation: how much of it is real?
    Li T; Jing Q; Yao L
    J Phys Chem B; 2011 Apr; 115(13):3488-95. PubMed ID: 21391698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New approaches to the dynamic interpretation and prediction of NMR relaxation data from proteins.
    Brüschweiler R
    Curr Opin Struct Biol; 2003 Apr; 13(2):175-83. PubMed ID: 12727510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time scales of slow motions in ubiquitin explored by heteronuclear double resonance.
    Salvi N; Ulzega S; Ferrage F; Bodenhausen G
    J Am Chem Soc; 2012 Feb; 134(5):2481-4. PubMed ID: 22206505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of 15N NMR relaxation measurements with a molecular dynamics simulation: backbone dynamics of the glucocorticoid receptor DNA-binding domain.
    Eriksson MA; Berglund H; Härd T; Nilsson L
    Proteins; 1993 Dec; 17(4):375-90. PubMed ID: 8108380
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.