BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18621827)

  • 1. Role of extracellular glutamic acids in the stability and energy landscape of bacteriorhodopsin.
    Sapra KT; Doehner J; Renugopalakrishnan V; Padrós E; Muller DJ
    Biophys J; 2008 Oct; 95(7):3407-18. PubMed ID: 18621827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic and steric interactions determine bacteriorhodopsin single-molecule biomechanics.
    Voïtchovsky K; Contera SA; Ryan JF
    Biophys J; 2007 Sep; 93(6):2024-37. PubMed ID: 17513362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and function in bacteriorhodopsin: the role of the interhelical loops in the folding and stability of bacteriorhodopsin.
    Kim JM; Booth PJ; Allen SJ; Khorana HG
    J Mol Biol; 2001 Apr; 308(2):409-22. PubMed ID: 11327776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two groups control light-induced Schiff base deprotonation and the proton affinity of Asp85 in the Arg82 his mutant of bacteriorhodopsin.
    Imasheva ES; Balashov SP; Ebrey TG; Chen N; Crouch RK; Menick DR
    Biophys J; 1999 Nov; 77(5):2750-63. PubMed ID: 10545374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of the proton transfer reaction on the cytoplasmic surface of bacteriorhodopsin.
    Checover S; Marantz Y; Nachliel E; Gutman M; Pfeiffer M; Tittor J; Oesterhelt D; Dencher NA
    Biochemistry; 2001 Apr; 40(14):4281-92. PubMed ID: 11284684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy.
    Jacobson DR; Perkins TT
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of extracellular Glu residues to the structure and function of bacteriorhodopsin. Presence of specific cation-binding sites.
    Sanz C; Márquez M; Perálvarez A; Elouatik S; Sepulcre F; Querol E; Lazarova T; Padrós E
    J Biol Chem; 2001 Nov; 276(44):40788-94. PubMed ID: 11524418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the rate of the final step in the bacteriorhodopsin photocycle being controlled by the proton release group: R134H mutant.
    Lu M; Balashov SP; Ebrey TG; Chen N; Chen Y; Menick DR; Crouch RK
    Biochemistry; 2000 Mar; 39(9):2325-31. PubMed ID: 10694399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface.
    Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK
    Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of mutations of Lys41 and Asp102 of bacteriorhodopsin.
    Zhao Y; Wang Y; Ma D; Wu J; Huang W; Ding J
    Biosci Biotechnol Biochem; 2011; 75(7):1364-70. PubMed ID: 21737924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy.
    Sapra KT; Besir H; Oesterhelt D; Muller DJ
    J Mol Biol; 2006 Jan; 355(4):640-50. PubMed ID: 16330046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR analysis of the SII540 intermediate of sensory rhodopsin II: Asp73 is the Schiff base proton acceptor.
    Bergo V; Spudich EN; Scott KL; Spudich JL; Rothschild KJ
    Biochemistry; 2000 Mar; 39(11):2823-30. PubMed ID: 10715101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupling between the retinal thermal isomerization and the Glu194 residue of bacteriorhodopsin.
    Lazarova T; Querol E; Padrós E
    Photochem Photobiol; 2009; 85(2):617-23. PubMed ID: 19267876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unfolding pathways of native bacteriorhodopsin depend on temperature.
    Janovjak H; Kessler M; Oesterhelt D; Gaub H; Müller DJ
    EMBO J; 2003 Oct; 22(19):5220-9. PubMed ID: 14517259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early photocycle structural changes in a bacteriorhodopsin mutant engineered to transmit photosensory signals.
    Sudo Y; Furutani Y; Spudich JL; Kandori H
    J Biol Chem; 2007 May; 282(21):15550-8. PubMed ID: 17387174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump.
    Butt HJ; Fendler K; Bamberg E; Tittor J; Oesterhelt D
    EMBO J; 1989 Jun; 8(6):1657-63. PubMed ID: 2548851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opening the Schiff base moiety of bacteriorhodopsin by mutation of the four extracellular Glu side chains.
    Sanz C; Lazarova T; Sepulcre F; González-Moreno R; Bourdelande JL; Querol E; Padrós E
    FEBS Lett; 1999 Jul; 456(1):191-5. PubMed ID: 10452556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin.
    Balashov SP; Imasheva ES; Ebrey TG; Chen N; Menick DR; Crouch RK
    Biochemistry; 1997 Jul; 36(29):8671-6. PubMed ID: 9289012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of a covalently bound cofactor to the folding and thermodynamic stability of an integral membrane protein.
    Curnow P; Booth PJ
    J Mol Biol; 2010 Nov; 403(4):630-42. PubMed ID: 20850459
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.