These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 18622617)

  • 1. Pseudohyphal differentiation defect due to mutations in GPCR and ammonium signaling is suppressed by low glucose concentration: a possible integrated role for carbon and nitrogen limitation.
    Iyer RS; Das M; Bhat PJ
    Curr Genet; 2008 Aug; 54(2):71-81. PubMed ID: 18622617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. KRH1 and KRH2 are functionally non-redundant in signaling for pseudohyphal differentiation in Saccharomyces cerevisiae.
    Iyer RS; Bhat PJ
    Curr Genet; 2017 Oct; 63(5):851-859. PubMed ID: 28247024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae.
    Lorenz MC; Heitman J
    EMBO J; 1998 Aug; 17(5):1236-47. PubMed ID: 9482721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trehalose biosynthetic pathway regulates filamentation response in Saccharomyces cerevisiae.
    Iyer R; Bhat PJ
    Mol Biol Rep; 2022 Oct; 49(10):9387-9396. PubMed ID: 35908239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog.
    Lorenz MC; Heitman J
    EMBO J; 1997 Dec; 16(23):7008-18. PubMed ID: 9384580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcript and proteomic analyses of wild-type and gpa2 mutant Saccharomyces cerevisiae strains suggest a role for glycolytic carbon source sensing in pseudohyphal differentiation.
    Medintz IL; Vora GJ; Rahbar AM; Thach DC
    Mol Biosyst; 2007 Sep; 3(9):623-34. PubMed ID: 17700863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic AMP-protein kinase A and Snf1 signaling mechanisms underlie the superior potency of sucrose for induction of filamentation in Saccharomyces cerevisiae.
    Van de Velde S; Thevelein JM
    Eukaryot Cell; 2008 Feb; 7(2):286-93. PubMed ID: 17890371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The yeast Sks1p kinase signaling network regulates pseudohyphal growth and glucose response.
    Johnson C; Kweon HK; Sheidy D; Shively CA; Mellacheruvu D; Nesvizhskii AI; Andrews PC; Kumar A
    PLoS Genet; 2014 Mar; 10(3):e1004183. PubMed ID: 24603354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The yeast ammonium transport protein Mep2 and its positive regulator, the Npr1 kinase, play an important role in normal and pseudohyphal growth on various nitrogen media through retrieval of excreted ammonium.
    Boeckstaens M; André B; Marini AM
    Mol Microbiol; 2007 Apr; 64(2):534-46. PubMed ID: 17493133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of the Snf1-activating kinases during nitrogen limitation and pseudohyphal differentiation in Saccharomyces cerevisiae.
    Orlova M; Ozcetin H; Barrett L; Kuchin S
    Eukaryot Cell; 2010 Jan; 9(1):208-14. PubMed ID: 19880754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The G protein-coupled receptor gpr1 is a nutrient sensor that regulates pseudohyphal differentiation in Saccharomyces cerevisiae.
    Lorenz MC; Pan X; Harashima T; Cardenas ME; Xue Y; Hirsch JP; Heitman J
    Genetics; 2000 Feb; 154(2):609-22. PubMed ID: 10655215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae.
    Ansari K; Martin S; Farkasovsky M; Ehbrecht IM; Küntzel H
    J Biol Chem; 1999 Oct; 274(42):30052-8. PubMed ID: 10514491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulators of pseudohyphal differentiation in Saccharomyces cerevisiae identified through multicopy suppressor analysis in ammonium permease mutant strains.
    Lorenz MC; Heitman J
    Genetics; 1998 Dec; 150(4):1443-57. PubMed ID: 9832522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose.
    Kraakman L; Lemaire K; Ma P; Teunissen AW; Donaton MC; Van Dijck P; Winderickx J; de Winde JH; Thevelein JM
    Mol Microbiol; 1999 Jun; 32(5):1002-12. PubMed ID: 10361302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gpr1, a putative G-protein-coupled receptor, regulates morphogenesis and hypha formation in the pathogenic fungus Candida albicans.
    Miwa T; Takagi Y; Shinozaki M; Yun CW; Schell WA; Perfect JR; Kumagai H; Tamaki H
    Eukaryot Cell; 2004 Aug; 3(4):919-31. PubMed ID: 15302825
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudohyphal growth of Cryptococcus neoformans is a reversible dimorphic transition in response to ammonium that requires Amt1 and Amt2 ammonium permeases.
    Lee SC; Phadke S; Sun S; Heitman J
    Eukaryot Cell; 2012 Nov; 11(11):1391-8. PubMed ID: 23002105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Messengers for morphogenesis: inositol polyphosphate signaling and yeast pseudohyphal growth.
    Mutlu N; Kumar A
    Curr Genet; 2019 Feb; 65(1):119-125. PubMed ID: 30101372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae.
    Pan X; Heitman J
    Mol Cell Biol; 1999 Jul; 19(7):4874-87. PubMed ID: 10373537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. G-protein-coupled receptor Gpr1 and G-protein Gpa2 of cAMP-dependent signaling pathway are involved in glucose-induced pexophagy in the yeast Saccharomyces cerevisiae.
    Nazarko VY; Thevelein JM; Sibirny AA
    Cell Biol Int; 2008 May; 32(5):502-4. PubMed ID: 18096414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Pathogenic Yeast Candida parapsilosis Forms Pseudohyphae through Different Signaling Pathways Depending on the Available Carbon Source.
    Rupert CB; Rusche LN
    mSphere; 2022 Jun; 7(3):e0002922. PubMed ID: 35766504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.