These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18622874)

  • 21. Alternative sugars as potential carriers for dry powder inhalations.
    Steckel H; Bolzen N
    Int J Pharm; 2004 Feb; 270(1-2):297-306. PubMed ID: 14726144
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of drug particle surface energetics and young's modulus by atomic force microscopy and inverse gas chromatography.
    Davies M; Brindley A; Chen X; Marlow M; Doughty SW; Shrubb I; Roberts CJ
    Pharm Res; 2005 Jul; 22(7):1158-66. PubMed ID: 16028017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterisation of adhesional properties of lactose carriers using atomic force microscopy.
    Louey MD; Mulvaney P; Stewart PJ
    J Pharm Biomed Anal; 2001 Jun; 25(3-4):559-67. PubMed ID: 11377036
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Air classifier technology (ACT) in dry powder inhalation Part 4. Performance of air classifier technology in the Novolizer multi-dose dry powder inhaler.
    de Boer AH; Hagedoorn P; Gjaltema D; Goede J; Frijlink HW
    Int J Pharm; 2006 Mar; 310(1-2):81-9. PubMed ID: 16442246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preparation and Evaluation of Surface Modified Lactose Particles for Improved Performance of Fluticasone Propionate Dry Powder Inhaler.
    Singh DJ; Jain RR; Soni PS; Abdul S; Darshana H; Gaikwad RV; Menon MD
    J Aerosol Med Pulm Drug Deliv; 2015 Aug; 28(4):254-67. PubMed ID: 25517187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extrinsic lactose fines improve dry powder inhaler formulation performance of a cohesive batch of budesonide via agglomerate formation and consequential co-deposition.
    Kinnunen H; Hebbink G; Peters H; Huck D; Makein L; Price R
    Int J Pharm; 2015 Jan; 478(1):53-59. PubMed ID: 25448567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elucidating Molecular- and Particle-Level Changes during the Annealing of a Micronized Crystalline Drug.
    Puri V; Shur J; Narang AS
    Mol Pharm; 2019 Oct; 16(10):4339-4351. PubMed ID: 31454254
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel Budesonide Particles for Dry Powder Inhalation Prepared Using a Microfluidic Reactor Coupled With Ultrasonic Spray Freeze Drying.
    Saboti D; Maver U; Chan HK; Planinšek O
    J Pharm Sci; 2017 Jul; 106(7):1881-1888. PubMed ID: 28285981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling dispersion of dry powders for inhalation. The concepts of total fines, cohesive energy and interaction parameters.
    Thalberg K; Berg E; Fransson M
    Int J Pharm; 2012 May; 427(2):224-33. PubMed ID: 22349053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of secondary processing on the structural relaxation dynamics of fluticasone propionate.
    Depasquale R; Lee SL; Saluja B; Shur J; Price R
    AAPS PharmSciTech; 2015 Jun; 16(3):589-600. PubMed ID: 25398478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of budesonide nanocluster dry powder aerosols: formulation and stability.
    El-Gendy N; Huang S; Selvam P; Soni P; Berkland C
    J Pharm Sci; 2012 Sep; 101(9):3445-55. PubMed ID: 22619045
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content.
    Shalash AO; Molokhia AM; Elsayed MM
    Eur J Pharm Biopharm; 2015 Oct; 96():291-303. PubMed ID: 26275831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Back to basics: the development of a simple, homogenous, two-component dry-powder inhaler formulation for the delivery of budesonide using miscible vinyl polymers.
    Buttini F; Colombo P; Wenger MP; Mesquida P; Marriott C; Jones SA
    J Pharm Sci; 2008 Mar; 97(3):1257-67. PubMed ID: 17680663
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dry powders for oral inhalation free of lactose carrier particles.
    Healy AM; Amaro MI; Paluch KJ; Tajber L
    Adv Drug Deliv Rev; 2014 Aug; 75():32-52. PubMed ID: 24735676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Capabilities and limitations of using powder rheology and permeability to predict dry powder inhaler performance.
    Cordts E; Steckel H
    Eur J Pharm Biopharm; 2012 Oct; 82(2):417-23. PubMed ID: 22902789
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Drug-lactose binding aspects in adhesive mixtures: controlling performance in dry powder inhaler formulations by altering lactose carrier surfaces.
    Zhou QT; Morton DA
    Adv Drug Deliv Rev; 2012 Mar; 64(3):275-84. PubMed ID: 21782866
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dry powder inhaler: influence of humidity on topology and adhesion studied by AFM.
    Bérard V; Lesniewska E; Andrès C; Pertuy D; Laroche C; Pourcelot Y
    Int J Pharm; 2002 Jan; 232(1-2):213-24. PubMed ID: 11790505
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of budesonide nanocluster dry powder aerosols: processing.
    El-Gendy N; Selvam P; Soni P; Berkland C
    J Pharm Sci; 2012 Sep; 101(9):3425-33. PubMed ID: 22539360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of interactive ternary mixtures on dispersion characteristics of ipratropium bromide in dry powder inhaler formulations.
    Beilmann B; Kubiak R; Grab P; Häusler H; Langguth P
    AAPS PharmSciTech; 2007 Apr; 8(2):Article 31. PubMed ID: 17622109
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The role of force control agents in high-dose dry powder inhaler formulations.
    Begat P; Morton DA; Shur J; Kippax P; Staniforth JN; Price R
    J Pharm Sci; 2009 Aug; 98(8):2770-83. PubMed ID: 19067395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.