These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 18623317)
1. Cultivation of cell-polymer tissue constructs in simulated microgravity. Freed LE; Vunjak-Novakovic G Biotechnol Bioeng; 1995 May; 46(4):306-13. PubMed ID: 18623317 [TBL] [Abstract][Full Text] [Related]
2. Microgravity tissue engineering. Freed LE; Vunjak-Novakovic G In Vitro Cell Dev Biol Anim; 1997 May; 33(5):381-5. PubMed ID: 9196897 [TBL] [Abstract][Full Text] [Related]
3. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. Vunjak-Novakovic G; Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE J Orthop Res; 1999 Jan; 17(1):130-8. PubMed ID: 10073657 [TBL] [Abstract][Full Text] [Related]
4. Modulation of the mechanical properties of tissue engineered cartilage. Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE; Vunjak-Novakovic G Biorheology; 2000; 37(1-2):141-7. PubMed ID: 10912186 [TBL] [Abstract][Full Text] [Related]
5. Establishment of three-dimensional tissue-engineered bone constructs under microgravity-simulated conditions. Jin F; Zhang Y; Xuan K; He D; Deng T; Tang L; Lu W; Duan Y Artif Organs; 2010 Feb; 34(2):118-25. PubMed ID: 19817729 [TBL] [Abstract][Full Text] [Related]
6. Chondrogenesis in a cell-polymer-bioreactor system. Freed LE; Hollander AP; Martin I; Barry JR; Langer R; Vunjak-Novakovic G Exp Cell Res; 1998 Apr; 240(1):58-65. PubMed ID: 9570921 [TBL] [Abstract][Full Text] [Related]
7. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. Sikavitsas VI; Bancroft GN; Mikos AG J Biomed Mater Res; 2002 Oct; 62(1):136-48. PubMed ID: 12124795 [TBL] [Abstract][Full Text] [Related]
8. A novel rotating-shaft bioreactor for two-phase cultivation of tissue-engineered cartilage. Chen HC; Lee HP; Sung ML; Liao CJ; Hu YC Biotechnol Prog; 2004; 20(6):1802-9. PubMed ID: 15575715 [TBL] [Abstract][Full Text] [Related]
9. Bioreactors mediate the effectiveness of tissue engineering scaffolds. Pei M; Solchaga LA; Seidel J; Zeng L; Vunjak-Novakovic G; Caplan AI; Freed LE FASEB J; 2002 Oct; 16(12):1691-4. PubMed ID: 12207008 [TBL] [Abstract][Full Text] [Related]
10. Tissue engineering of human cartilage in bioreactors using single and composite cell-seeded scaffolds. Mahmoudifar N; Doran PM Biotechnol Bioeng; 2005 Aug; 91(3):338-55. PubMed ID: 15959891 [TBL] [Abstract][Full Text] [Related]
11. Flow characterization of a wavy-walled bioreactor for cartilage tissue engineering. Bilgen B; Sucosky P; Neitzel GP; Barabino GA Biotechnol Bioeng; 2006 Dec; 95(6):1009-22. PubMed ID: 17031866 [TBL] [Abstract][Full Text] [Related]
12. Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Mauck RL; Byers BA; Yuan X; Tuan RS Biomech Model Mechanobiol; 2007 Jan; 6(1-2):113-25. PubMed ID: 16691412 [TBL] [Abstract][Full Text] [Related]
13. Expansion of human articular chondrocytes and formation of tissue-engineered cartilage: a step towards exploring a potential use of matrix-induced cell therapy. Munirah S; Samsudin OC; Aminuddin BS; Ruszymah BH Tissue Cell; 2010 Oct; 42(5):282-92. PubMed ID: 20810142 [TBL] [Abstract][Full Text] [Related]
14. Influence of intermittent pressure, fluid flow, and mixing on the regenerative properties of articular chondrocytes. Carver SE; Heath CA Biotechnol Bioeng; 1999 Nov; 65(3):274-81. PubMed ID: 10486125 [TBL] [Abstract][Full Text] [Related]
15. Mechanobiology of engineered cartilage cultured under a quantified fluid-dynamic environment. Raimondi MT; Boschetti F; Falcone L; Fiore GB; Remuzzi A; Marinoni E; Marazzi M; Pietrabissa R Biomech Model Mechanobiol; 2002 Jun; 1(1):69-82. PubMed ID: 14586708 [TBL] [Abstract][Full Text] [Related]
16. Integration of engineered cartilage. Obradovic B; Martin I; Padera RF; Treppo S; Freed LE; Vunjak-Novakovic G J Orthop Res; 2001 Nov; 19(6):1089-97. PubMed ID: 11781010 [TBL] [Abstract][Full Text] [Related]
17. Engineering of rat articular cartilage on porous sponges: effects of tgf-beta 1 and microgravity bioreactor culture. Emin N; Koç A; Durkut S; Elçin AE; Elçin YM Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(2):123-37. PubMed ID: 18437589 [TBL] [Abstract][Full Text] [Related]
18. Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Alves da Silva ML; Crawford A; Mundy JM; Correlo VM; Sol P; Bhattacharya M; Hatton PV; Reis RL; Neves NM Acta Biomater; 2010 Mar; 6(3):1149-57. PubMed ID: 19788942 [TBL] [Abstract][Full Text] [Related]
19. Combination of baculovirus-mediated gene transfer and rotating-shaft bioreactor for cartilage tissue engineering. Chen HC; Lee HP; Ho YC; Sung ML; Hu YC Biomaterials; 2006 Jun; 27(16):3154-62. PubMed ID: 16457882 [TBL] [Abstract][Full Text] [Related]
20. Bioreactor studies of natural and tissue engineered cartilage. Obradovic B; Martin I; Freed LE; Vunjak-Novakovic G Ortop Traumatol Rehabil; 2001 Apr; 3(2):181-9. PubMed ID: 17986981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]