BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18623323)

  • 1. Pathway engineering for production of aromatics in Escherichia coli: Confirmation of stoichiometric analysis by independent modulation of AroG, TktA, and Pps activities.
    Patnaik R; Spitzer RG; Liao JC
    Biotechnol Bioeng; 1995 May; 46(4):361-70. PubMed ID: 18623323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Co-expressions of phosphoenolpyruvate synthetase A (ppsA) and transketolase A (tktA) genes of Escherichia coli].
    Li YH; Liu Y; Wang SC; Tong ZY; Xu QS
    Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):301-6. PubMed ID: 15969011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic engineering and control analysis for production of aromatics: Role of transaldolase.
    Lu JL; Liao JC
    Biotechnol Bioeng; 1997 Jan; 53(2):132-8. PubMed ID: 18633957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway engineering for the production of aromatic compounds in Escherichia coli.
    Flores N; Xiao J; Berry A; Bolivar F; Valle F
    Nat Biotechnol; 1996 May; 14(5):620-3. PubMed ID: 9630954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield.
    Patnaik R; Liao JC
    Appl Environ Microbiol; 1994 Nov; 60(11):3903-8. PubMed ID: 7993080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering and protein directed evolution increase the yield of L-phenylalanine synthesized from glucose in Escherichia coli.
    Báez-Viveros JL; Osuna J; Hernández-Chávez G; Soberón X; Bolívar F; Gosset G
    Biotechnol Bioeng; 2004 Aug; 87(4):516-24. PubMed ID: 15286989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of (E)- and (Z)-phosphoenol-3-fluoropyruvate as mechanistic probes reveals significant differences between the active sites of KDO8P and DAHP synthases.
    Furdui CM; Sau AK; Yaniv O; Belakhov V; Woodard RW; Baasov T; Anderson KS
    Biochemistry; 2005 May; 44(19):7326-35. PubMed ID: 15882071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of Escherichia coli to enhance phenylalanine production.
    Yakandawala N; Romeo T; Friesen AD; Madhyastha S
    Appl Microbiol Biotechnol; 2008 Feb; 78(2):283-91. PubMed ID: 18080813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes.
    Gottlieb K; Albermann C; Sprenger GA
    Microb Cell Fact; 2014 Jul; 13(1):96. PubMed ID: 25012491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis and over expression of aroG gene of Escherichia coli K-12.
    Lin S; Meng X; Jiang J; Pang D; Jones G; OuYang H; Ren L
    Int J Biol Macromol; 2012 Dec; 51(5):915-9. PubMed ID: 22819948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulative fine-tuning of the two novel DAHP isoenzymes aroFp and aroGp of the filamentous fungus Aspergillus nidulans.
    Hartmann M; Heinrich G; Braus GH
    Arch Microbiol; 2001 Feb; 175(2):112-21. PubMed ID: 11285739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and expression of mutagenesis strain of aroG gene from Escherichia coli K-12.
    Lin S; Liang R; Meng X; OuYang H; Yan H; Wang Y; Jones GS
    Int J Biol Macromol; 2014 Jul; 68():173-7. PubMed ID: 24769085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
    Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z
    Bioresour Technol; 2014 Aug; 166():64-71. PubMed ID: 24905044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate and metal complexes of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase from Saccharomyces cerevisiae provide new insights into the catalytic mechanism.
    König V; Pfeil A; Braus GH; Schneider TR
    J Mol Biol; 2004 Mar; 337(3):675-90. PubMed ID: 15019786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and application of novel feedback-resistant 3-deoxy-d-arabino-heptulosonate-7-phosphate synthases by engineering the N-terminal domain for L-phenylalanine synthesis.
    Zhang C; Kang Z; Zhang J; Du G; Chen J; Yu X
    FEMS Microbiol Lett; 2014 Apr; 353(1):11-8. PubMed ID: 24517515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of F209S Mutation of Escherichia coli AroG on Resistance to Phenylalanine Feedback Inhibition.
    Jiang PH; Shi M; Qian ZK; Li NJ; Huang WD
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2000; 32(5):441-444. PubMed ID: 12058188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of 3-deoxy-D-arabino-heptulosonate 7-phosphate productivity and yield from glucose in Escherichia coli devoid of the glucose phosphotransferase transport system.
    Báez JL; Bolívar F; Gosset G
    Biotechnol Bioeng; 2001 Jun; 73(6):530-5. PubMed ID: 11344458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effect of pps and aroGfbr overexpression on L-tryptophan production in Corynebacterium pekinense].
    Zang C; Zhao Z; Wang Y; Zhang Y; Ding J
    Wei Sheng Wu Xue Bao; 2014 Jan; 54(1):24-32. PubMed ID: 24783851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of metabolic engineering to improve both the production and use of biotech indigo.
    Berry A; Dodge TC; Pepsin M; Weyler W
    J Ind Microbiol Biotechnol; 2002 Mar; 28(3):127-33. PubMed ID: 12074085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of two 3-deoxy-d-Arabino-Heptulosonate 7-phosphate synthases from Bacillusmethanolicus.
    Gruenberg M; Irla M; Myllek S; Draths K
    Protein Expr Purif; 2021 Dec; 188():105972. PubMed ID: 34517109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.