These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 18623373)

  • 1. Kinetics of phenolic polymerization catalyzed by peroxidase in organic media.
    Xu YP; Huang GL; Yu YT
    Biotechnol Bioeng; 1995 Jul; 47(1):117-9. PubMed ID: 18623373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Horseradish peroxidase-catalyzed polymerization of cardanol in the presence of redox mediators.
    Won K; Kim YH; An ES; Lee YS; Song BK
    Biomacromolecules; 2004; 5(1):1-4. PubMed ID: 14715000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical and Monte Carlo simulations of phenolic polymerizations catalyzed by peroxidase.
    Ryu K; McEldoon JP; Pokora AR; Cyrus W; Dordick JS
    Biotechnol Bioeng; 1993 Sep; 42(7):807-14. PubMed ID: 18613127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidation of phenols by horseradish peroxidase and lactoperoxidase compound II--kinetic considerations.
    Zahida MS; Deva W; Peerzada GM; Behere DV
    Indian J Biochem Biophys; 1998 Dec; 35(6):353-7. PubMed ID: 10412229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoselective oxidative polymerization of m-ethynylphenol by peroxidase catalyst to a new reactive polyphenol.
    Tonami H; Uyama H; Kobayashi S; Fujita T; Taguchi Y; Osada K
    Biomacromolecules; 2000; 1(2):150-1. PubMed ID: 11710092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerization of phenols catalyzed by peroxidase in nonaqueous media.
    Dordick JS; Marletta MA; Klibanov AM
    Biotechnol Bioeng; 1987 Jul; 30(1):31-6. PubMed ID: 18576580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The chloroperoxidase-catalyzed oxidation of phenols. Mechanism, selectivity, and characterization of enzyme-substrate complexes.
    Casella L; Poli S; Gullotti M; Selvaggini C; Beringhelli T; Marchesini A
    Biochemistry; 1994 May; 33(21):6377-86. PubMed ID: 8204570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Release of substituents from phenolic compounds during oxidative coupling reactions.
    Dec J; Haider K; Bollag JM
    Chemosphere; 2003 Jul; 52(3):549-56. PubMed ID: 12738292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclodextrin effect on solvolysis of substituted benzoyl chlorides.
    Báscuas J; García-Río L; Leis JR
    Org Biomol Chem; 2004 Apr; 2(8):1186-93. PubMed ID: 15064797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action mechanism of tyrosinase on meta- and para-hydroxylated monophenols.
    Fenoll LG; Rodríguez-López JN; Varón R; García-Ruiz PA; García-Cánovas F; Tudela J
    Biol Chem; 2000 Apr; 381(4):313-20. PubMed ID: 10839460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical kinetics and interactions involved in horseradish peroxidase-mediated oxidative polymerization of phenolic compounds.
    Cheng W; Harper WF
    Enzyme Microb Technol; 2012 Mar; 50(3):204-8. PubMed ID: 22305176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of chlorine content and position of chlorinated phenols on their oxidation kinetics by potassium permanganate.
    Zhang J; Li GB; Jun MA
    J Environ Sci (China); 2003 May; 15(3):342-5. PubMed ID: 12938984
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Horseradish peroxidase as a catalyst for atom transfer radical polymerization.
    Sigg SJ; Seidi F; Renggli K; Silva TB; Kali G; Bruns N
    Macromol Rapid Commun; 2011 Nov; 32(21):1710-5. PubMed ID: 21842510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 'meta effect' in the fragmentation reactions of ionised alkyl phenols and alkyl anisoles.
    Bouchoux G; Sablier M; Miyakoshi T; Honda T
    J Mass Spectrom; 2012 Apr; 47(4):539-46. PubMed ID: 22689631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrophotometric determination of phenolic compounds by enzymatic and chemical methods--a comparison of structure--activity relationship.
    Ma YT; Cheung PC
    J Agric Food Chem; 2007 May; 55(10):4222-8. PubMed ID: 17441728
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic reduction of aromatic azides to amines using CdS and CdSe nanoparticles.
    Warrier M; Lo MK; Monbouquette H; Garcia-Garibay MA
    Photochem Photobiol Sci; 2004 Sep; 3(9):859-63. PubMed ID: 15346187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dramatic solvent and hydration effects on the transition state of soybean peroxidase.
    Serdakowski AL; Munir IZ; Dordick JS
    J Am Chem Soc; 2006 Nov; 128(44):14272-3. PubMed ID: 17076497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin and Mn peroxidase-catalyzed oxidation of phenolic lignin oligomers.
    Banci L; Ciofi-Baffoni S; Tien M
    Biochemistry; 1999 Mar; 38(10):3205-10. PubMed ID: 10074376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometry and energy of substituted phenyl cations.
    Lazzaroni S; Dondi D; Fagnoni M; Albini A
    J Org Chem; 2008 Jan; 73(1):206-11. PubMed ID: 18052294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative structure-activity relationship based quantification of the impacts of enzyme-substrate binding on rates of peroxidase-mediated reactions of estrogenic phenolic chemicals.
    Colosi LM; Huang Q; Weber WJ
    J Am Chem Soc; 2006 Mar; 128(12):4041-7. PubMed ID: 16551113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.