These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 18623403)

  • 1. A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process.
    Smolders GJ; van der Meij J; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 Aug; 47(3):277-87. PubMed ID: 18623403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A metabolic model of the biological phosphorus removal process: I. Effect of the sludge retention time.
    Smolders GJ; Klop JM; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 Nov; 48(3):222-33. PubMed ID: 18623482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence.
    Smolders GJ; van der Meij J; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1994 Mar; 43(6):461-70. PubMed ID: 18615742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process.
    Smolders GJ; van der Meij J; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1994 Sep; 44(7):837-48. PubMed ID: 18618851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aerobic phosphorus release linked to acetate uptake in bio-P sludge: process modeling using oxygen uptake rate.
    Guisasola A; Pijuan M; Baeza JA; Carrera J; Casas C; Lafuente J
    Biotechnol Bioeng; 2004 Mar; 85(7):722-33. PubMed ID: 14991650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal.
    Murnleitner E; Kuba T; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1997 Jun; 54(5):434-50. PubMed ID: 18634136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A metabolic model for biological phosphorus removal by denitrifying organisms.
    Kuba T; Murnleitner E; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1996 Dec; 52(6):685-95. PubMed ID: 18629947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of dissolved oxygen on PHB accumulation in activated sludge cultures.
    Third KA; Newland M; Cord-Ruwisch R
    Biotechnol Bioeng; 2003 Apr; 82(2):238-50. PubMed ID: 12584766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes.
    Oehmen A; Lopez-Vazquez CM; Carvalho G; Reis MA; van Loosdrecht MC
    Water Res; 2010 Aug; 44(15):4473-86. PubMed ID: 20580055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A metabolic model of the biological phosphorus removal process: II. Validation during start-up conditions.
    Smolders GJ; Bulstra DJ; Jacobs R; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 Nov; 48(3):234-45. PubMed ID: 18623483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage.
    Acevedo B; Oehmen A; Carvalho G; Seco A; Borrás L; Barat R
    Water Res; 2012 Apr; 46(6):1889-900. PubMed ID: 22297158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial storage products, biomass density, and settling properties of enhanced biological phosphorus removal activated sludge.
    Schuler AJ; Jenkins D; Ronen P
    Water Sci Technol; 2001; 43(1):173-80. PubMed ID: 11379088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic model for glycogen-accumulating organisms in anaerobic/aerobic activated sludge systems.
    Zeng RJ; van Loosdrecht MC; Yuan Z; Keller J
    Biotechnol Bioeng; 2003 Jan; 81(1):92-105. PubMed ID: 12432585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic model of a granular sludge SBR: influences on nutrient removal.
    de Kreuk MK; Picioreanu C; Hosseini M; Xavier JB; van Loosdrecht MC
    Biotechnol Bioeng; 2007 Jul; 97(4):801-15. PubMed ID: 17177197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature effects on glycogen accumulating organisms.
    Lopez-Vazquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC
    Water Res; 2009 Jun; 43(11):2852-64. PubMed ID: 19380157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stoichiometric analysis of dissolved organic carbon flux into storage and growth in aerobic granules culture.
    Li Y; Liu Y; Wang ZW
    Biotechnol J; 2009 Feb; 4(2):238-46. PubMed ID: 19137568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of polyhydroxybutyrate by activated sludge performing enhanced biological phosphorus removal.
    Rodgers M; Wu G
    Bioresour Technol; 2010 Feb; 101(3):1049-53. PubMed ID: 19765985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling aerobic carbon oxidation and storage by integrating respirometric, titrimetric, and off-gas CO2 measurements.
    Pratt S; Yuan Z; Keller J
    Biotechnol Bioeng; 2004 Oct; 88(2):135-47. PubMed ID: 15449301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems.
    Ebenhöh O; Heinrich R
    Bull Math Biol; 2001 Jan; 63(1):21-55. PubMed ID: 11146883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.