These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 18623436)
1. Modeling of continuous Ph-stat stirred tank reactor with Lactococcus lactis ssp. lactis bv. diacetylactis immobilized in calcium alginate gel beads. Cachon R; Molin P; Diviès C Biotechnol Bioeng; 1995 Sep; 47(5):567-74. PubMed ID: 18623436 [TBL] [Abstract][Full Text] [Related]
2. Effect of inoculum composition and low KCl supplementation on the biological and rheological stability of an immobilized-cell system for mixed mesophilic lactic starter production. Lamboley L; Lacroix C; Sodini I; Lemay MJ; Champagne CP Biotechnol Prog; 2001; 17(6):1071-8. PubMed ID: 11735443 [TBL] [Abstract][Full Text] [Related]
3. The effective diffusion coefficient and the distribution constant for small molecules in calcium-alginate gel beads. Oyaas J; Storrø I; Svendsen H; Levine DW Biotechnol Bioeng; 1995 Aug; 47(4):492-500. PubMed ID: 18623426 [TBL] [Abstract][Full Text] [Related]
4. Continuous production of mixed lactic starters containing probiotics using immobilized cell technology. Doleyres Y; Fliss I; Lacroix C Biotechnol Prog; 2004; 20(1):145-50. PubMed ID: 14763837 [TBL] [Abstract][Full Text] [Related]
5. Continuous mixed strain mesophilic lactic starter production in supplemented whey permeate medium using immobilized cell technology. Lamboley L; Lacroix C; Champagne CP; Vuillemard JC Biotechnol Bioeng; 1997 Dec; 56(5):502-16. PubMed ID: 18642271 [TBL] [Abstract][Full Text] [Related]
6. Quantitative determination of the spatial distribution of pure- and mixed-strain immobilized cells in gel beads by immunofluorescence. Doleyres Y; Fliss I; Lacroix C Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):297-302. PubMed ID: 12111161 [TBL] [Abstract][Full Text] [Related]
7. Long-term mechanical and biological stability of an immobilized cell reactor for continuous mixed-strain mesophilic lactic starter production in whey permeate. Lamboley L; Lacroix C; Artignan JM; Champagne CP; Vuillemard JC Biotechnol Prog; 1999 Jul; 15(4):646-54. PubMed ID: 10441356 [TBL] [Abstract][Full Text] [Related]
8. pH-controlled cell release and biomass distribution of alginate-immobilized Lactococcus lactis subsp. lactis. Klinkenberg G; Lystad KQ; Levine DW; Dyrset N J Appl Microbiol; 2001 Oct; 91(4):705-14. PubMed ID: 11576308 [TBL] [Abstract][Full Text] [Related]
9. Dynamic modeling of immobilized cell reactor: application to ethanol fermentation. Nakasaki K; Murai T; Akiyama T Biotechnol Bioeng; 1989 Apr; 33(10):1317-23. PubMed ID: 18587866 [TBL] [Abstract][Full Text] [Related]
10. Kluyveromyces lactis cells entrapped in Ca-alginate beads for the continuous production of a heterologous glucoamylase. de Alteriis E; Silvestro G; Poletto M; Romano V; Capitanio D; Compagno C; Parascandola P J Biotechnol; 2004 Apr; 109(1-2):83-92. PubMed ID: 15063616 [TBL] [Abstract][Full Text] [Related]
11. Co-immobilized Nitrosomonas europaea and Nitrobacter agilis cells: validation of a dynamic model for simultaneous substrate conversion and growth in kappa-carrageenan gel beads. Hunik JH; Bos CG; van den Hoogen MP; De Gooijer CD; Tramper J Biotechnol Bioeng; 1994 May; 43(11):1153-63. PubMed ID: 18615529 [TBL] [Abstract][Full Text] [Related]
12. Increased stress tolerance of Bifidobacterium longum and Lactococcus lactis produced during continuous mixed-strain immobilized-cell fermentation. Doleyres Y; Fliss I; Lacroix C J Appl Microbiol; 2004; 97(3):527-39. PubMed ID: 15281933 [TBL] [Abstract][Full Text] [Related]
13. Co-fermentation of glucose and citrate by Lactococcus lactis diacetylactis: quantification of the relative metabolic rates by isotopic analysis at natural abundance. Goupry S; Gentil E; Akoka S; Robins RJ Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):489-97. PubMed ID: 12750852 [TBL] [Abstract][Full Text] [Related]
14. Semi-continuous xylose-to-xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor. Carvalho W; Canilha L; Silva SS Bioprocess Biosyst Eng; 2008 Aug; 31(5):493-8. PubMed ID: 18175152 [TBL] [Abstract][Full Text] [Related]
15. Citrate Fermentation by Lactococcus and Leuconostoc spp. Starrenburg MJ; Hugenholtz J Appl Environ Microbiol; 1991 Dec; 57(12):3535-40. PubMed ID: 16348602 [TBL] [Abstract][Full Text] [Related]
16. Growth and Energy Generation by Lactococcus lactis subsp. lactis biovar diacetylactis during Citrate Metabolism. Hugenholtz J; Perdon L; Abee T Appl Environ Microbiol; 1993 Dec; 59(12):4216-22. PubMed ID: 16349120 [TBL] [Abstract][Full Text] [Related]
17. Decoloration of textile dyes by alginate-immobilized Trametes versicolor. Ramsay JA; Mok WH; Luu YS; Savage M Chemosphere; 2005 Nov; 61(7):956-64. PubMed ID: 15878190 [TBL] [Abstract][Full Text] [Related]
18. Influence of lactose-citrate co-metabolism on the differences of growth and energetics in Leuconostoc lactis, Leuconostoc mesenteroides ssp. mesenteroides and Leuconostoc mesenteroides ssp. cremoris. Hache C; Cachon R; Wache Y; Belguendouz T; Riondet C; Deraedt A; Divies C Syst Appl Microbiol; 1999 Dec; 22(4):507-13. PubMed ID: 10794137 [TBL] [Abstract][Full Text] [Related]
19. Configuration of a bioreactor for milk lactose hydrolysis. Genari AN; Passos FV; Passos FM J Dairy Sci; 2003 Sep; 86(9):2783-9. PubMed ID: 14507014 [TBL] [Abstract][Full Text] [Related]
20. Natural-abundance isotope ratio mass spectrometry as a means of evaluating carbon redistribution during glucose-citrate cofermentation by Lactococcus lactis. Mahmoud M; Gentil E; Robins RJ Eur J Biochem; 2004 Nov; 271(22):4392-400. PubMed ID: 15560780 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]