These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 18623455)

  • 1. Kinetic model of disaccharide oxidation by Agrobacterium tumefaciens.
    Walter J; Jördening HJ
    Biotechnol Bioeng; 1995 Oct; 48(1):12-6. PubMed ID: 18623455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of pH and oxygen concentration on the formation of 3-ketodisaccharides by Agrobacterium tumefaciens.
    Stoppok E; Walter J; Buchholz K
    Appl Microbiol Biotechnol; 1995; 43(4):706-12. PubMed ID: 7546608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oligosaccharides and derivatives--integrating biocatalyst selectivity and chemical diversity.
    Buchholz K; Neubauer A; Anders J; Lampe E; Walter M
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):277-83. PubMed ID: 15296178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of keto-disaccharides from aldo-disaccharides in subcritical aqueous ethanol.
    Gao DM; Kobayashi T; Adachi S
    Biosci Biotechnol Biochem; 2016 May; 80(5):998-1005. PubMed ID: 26786171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial modification of sugars as building blocks for chemicals.
    Stoppok E; Matalla K; Buchholz K
    Appl Microbiol Biotechnol; 1992 Feb; 36(5):604-10. PubMed ID: 1368064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The thuEFGKAB operon of rhizobia and agrobacterium tumefaciens codes for transport of trehalose, maltitol, and isomers of sucrose and their assimilation through the formation of their 3-keto derivatives.
    Ampomah OY; Avetisyan A; Hansen E; Svenson J; Huser T; Jensen JB; Bhuvaneswari TV
    J Bacteriol; 2013 Sep; 195(17):3797-807. PubMed ID: 23772075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A practical kinetic model that considers endproduct inhibition in anaerobic digestion processes by including the equilibrium constant.
    Hoh CY; Cord-Ruwisch R
    Biotechnol Bioeng; 1996 Sep; 51(5):597-604. PubMed ID: 18629824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of experiments on biofilm penetration effects in a fluidized bed nitrification reactor.
    Denac M; Uzman S; Tanaka H; Dunn IJ
    Biotechnol Bioeng; 1983 Jul; 25(7):1841-61. PubMed ID: 18551486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies of lipid oxidation induced by hemoglobin measured by consumption of dissolved oxygen in a liposome model system.
    Carvajal AK; Rustad T; Mozuraityte R; Storrø I
    J Agric Food Chem; 2009 Sep; 57(17):7826-33. PubMed ID: 19691337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive kinetic model of laccase-catalyzed oxidation of aqueous phenol.
    Kurniawati S; Nicell JA
    Biotechnol Prog; 2009; 25(3):763-73. PubMed ID: 19496113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen supply to immobilized cells: 5. Theoretical calculations and experimental data for the oxidation of glycerol by immobilized Gluconobacter oxydans cells with oxygen or p-benzoquinone as electron acceptor.
    Adlercreutz P
    Biotechnol Bioeng; 1986 Feb; 28(2):223-32. PubMed ID: 18555319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CONVERSION OF DISACCHARIDES TO THE CORRESPONDING GLYCOSIDE-3-ULOSES BY INTACT CELLS OF AGROBACTERIUM TUMEFACIENS.
    FUKUI S; HOCHSTER RM
    Can J Biochem Physiol; 1963 Nov; 41():2363-71. PubMed ID: 14089536
    [No Abstract]   [Full Text] [Related]  

  • 13. Kinetic model for microbial uptake of insoluble solid-state substrate.
    Huang SY; Chou MS
    Biotechnol Bioeng; 1990 Mar; 35(6):547-58. PubMed ID: 18592550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Utilization of integrated Michaelis-Menten equation to determine kinetic constants.
    Bezerra RM; Dias AA
    Biochem Mol Biol Educ; 2007 Mar; 35(2):145-50. PubMed ID: 21591075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic modeling of a bi-enzymatic system for efficient conversion of lactose to lactobionic acid.
    Van Hecke W; Bhagwat A; Ludwig R; Dewulf J; Haltrich D; Van Langenhove H
    Biotechnol Bioeng; 2009 Apr; 102(5):1475-82. PubMed ID: 18988269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the effect of variable enzyme concentrations in a kinetic model of yeast glycolysis.
    Bruck J; Liebermeister W; Klipp E
    Genome Inform; 2008; 20():1-14. PubMed ID: 19425118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apparent zero-order kinetics of phenol biodegradation by substrate-inhibited microbes at low substrate concentrations.
    Shishido M; Toda M
    Biotechnol Bioeng; 1996 Jun; 50(6):709-17. PubMed ID: 18627080
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analysis and modeling of the liquid-liquid conversion of emulsified di-rhamnolipids by Naringinase from Penicillium decumbens.
    Magario I; Vielhauer O; Neumann A; Hausmann R; Syldatk C
    Biotechnol Bioeng; 2009 Jan; 102(1):9-19. PubMed ID: 18949755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between oxygen demand reactions and kinetic gas-water transfer in porous media.
    Oswald SE; Griepentrog M; Schirmer M; Balcke GU
    Water Res; 2008 Aug; 42(14):3579-90. PubMed ID: 18662823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidative degradation of dimethyl phthalate (DMP) by UV/H(2)O(2) process.
    Xu B; Gao NY; Cheng H; Xia SJ; Rui M; Zhao DD
    J Hazard Mater; 2009 Mar; 162(2-3):954-9. PubMed ID: 18639981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.