BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 18623462)

  • 1. Comparison of hydrolysis and esterification behavior of Humicola lanuginosa and Rhizomucor miehei lipases in AOT-stabilized water-in-oil microemulsions: I. Effect of pH and water content on reaction kinetics.
    Crooks GE; Rees GD; Robinson BH; Svensson M; Stephenson GR
    Biotechnol Bioeng; 1995 Oct; 48(1):78-88. PubMed ID: 18623462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of hydrolysis and esterification behavior of Humicola lanuginosa and Rhizomucor miehei lipases in AOT-stabilized water-in-oil microemulsions: II. Effect of temperature on reaction kinetics and general considerations of stability and productivity.
    Crooks GE; Rees GD; Robinson BH; Svensson M; Stephenson GR
    Biotechnol Bioeng; 1995 Nov; 48(3):190-6. PubMed ID: 18623477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic studies of Chromobacterium viscosum lipase in AOT water in oil microemulsions and gelatin microemulsion-based organogels.
    Jenta TR; Batts G; Rees GD; Robinson BH
    Biotechnol Bioeng; 1997 Jun; 54(5):416-27. PubMed ID: 18634134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant tail length-dependent lipase activity profile in cationic water-in-oil microemulsions.
    Dasgupta A; Das D; Mitra RN; Das PK
    J Colloid Interface Sci; 2005 Sep; 289(2):566-73. PubMed ID: 16112238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Esterification reactions catalyzed by Chromobacterium viscosum lipase in CTAB-based microemulsion systems.
    Rees GD; Robinson BH
    Biotechnol Bioeng; 1995 Feb; 45(4):344-55. PubMed ID: 18623188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity of alkaline phosphatase in water-in-oil microemulsions containing vegetable oil.
    Gupta S; Mukhopadhyay L; Moulik SP
    Indian J Biochem Biophys; 1995 Oct; 32(5):261-5. PubMed ID: 8713747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible microemulsions based on limonene: formulation, structure, and applications.
    Papadimitriou V; Pispas S; Syriou S; Pournara A; Zoumpanioti M; Sotiroudis TG; Xenakis A
    Langmuir; 2008 Apr; 24(7):3380-6. PubMed ID: 18303927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transesterification activity of a novel lipase from Acinetobacter venetianus RAG-1.
    Snellman EA; Colwell RR
    Antonie Van Leeuwenhoek; 2008 Nov; 94(4):621-5. PubMed ID: 18720025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme hyperactivity in AOT water-in-oil microemulsions is induced by 'lone' sodium counterions in the water-pool.
    Oldfield C; Freedman RB; Robinson BH
    Faraday Discuss; 2005; 129():247-63; discussion 275-89. PubMed ID: 15715311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic study of lipase catalyzed esterification reactions in water-in-oil microemulsions.
    Stamatis H; Xenakis A; Menge U; Kolisis FN
    Biotechnol Bioeng; 1993 Oct; 42(8):931-7. PubMed ID: 18613141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer modeling of substrate binding to lipases from Rhizomucor miehei, Humicola lanuginosa, and Candida rugosa.
    Norin M; Haeffner F; Achour A; Norin T; Hult K
    Protein Sci; 1994 Sep; 3(9):1493-503. PubMed ID: 7833809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Esterification reactions catalyzed by lipases immobilized in organogels: effect of temperature and substrate diffusion.
    Zoumpanioti M; Parmaklis P; de María PD; Stamatis H; Sinisterra JV; Xenakis A
    Biotechnol Lett; 2008 Sep; 30(9):1627-31. PubMed ID: 18427927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the Formation of Nano-Sized Platinum Particles in Water-in-Oil Microemulsions.
    Ingelsten HH; Bagwe R; Palmqvist A; Skoglundh M; Svanberg C; Holmberg K; Shah DO
    J Colloid Interface Sci; 2001 Sep; 241(1):104-111. PubMed ID: 11502113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantization of pH: evidence for acidic activity of triglyceride lipases.
    Poulsen KR; Snabe T; Petersen EI; Fojan P; Neves-Petersen MT; Wimmer R; Petersen SB
    Biochemistry; 2005 Aug; 44(34):11574-80. PubMed ID: 16114894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enantioselective synthesis of ibuprofen esters in AOT/isooctane microemulsions by Candida cylindracea lipase.
    Hedström G; Backlund M; Slotte JP
    Biotechnol Bioeng; 1993 Aug; 42(5):618-24. PubMed ID: 18613084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of urea on the enzymatic activity of a lipase entrapped in AOT-heptane-water reverse micellar solutions.
    Abuin E; Lissi E; Solar C
    J Colloid Interface Sci; 2005 Mar; 283(1):87-93. PubMed ID: 15694427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of lipase-catalyzed hydrolysis of olive oil in AOT-isooctane reversed micelles.
    Han D; Rhee JS
    Biotechnol Bioeng; 1986 Aug; 28(8):1250-5. PubMed ID: 18555453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The lipase-catalyzed hydrolysis of lutein diesters in non-aqueous media is favored at extremely low water activities.
    Mora-Pale JM; Pérez-Munguía S; González-Mejía JC; Dordick JS; Bárzana E
    Biotechnol Bioeng; 2007 Oct; 98(3):535-42. PubMed ID: 17724756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purification and Properties of Extracellular Lipases with Transesterification Activity and 1,3-Regioselectivity from
    Takó M; KotogÁn A; Papp T; Kadaikunnan S; Alharbi NS; VÁgvölgyi C
    J Microbiol Biotechnol; 2017 Feb; 27(2):277-288. PubMed ID: 27780957
    [No Abstract]   [Full Text] [Related]  

  • 20. Lipase-catalyzed synthesis of L-phenylalanyl-D-glucose.
    Lohith K; Divakar S
    J Biotechnol; 2005 Apr; 117(1):49-56. PubMed ID: 15831247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.