These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 18623482)

  • 1. A metabolic model of the biological phosphorus removal process: I. Effect of the sludge retention time.
    Smolders GJ; Klop JM; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 Nov; 48(3):222-33. PubMed ID: 18623482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A metabolic model of the biological phosphorus removal process: II. Validation during start-up conditions.
    Smolders GJ; Bulstra DJ; Jacobs R; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 Nov; 48(3):234-45. PubMed ID: 18623483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A structured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorus removal process.
    Smolders GJ; van der Meij J; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1995 Aug; 47(3):277-87. PubMed ID: 18623403
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorus removal.
    Lopez C; Pons MN; Morgenroth E
    Water Res; 2006 May; 40(8):1519-30. PubMed ID: 16631226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling aerobic carbon oxidation and storage by integrating respirometric, titrimetric, and off-gas CO2 measurements.
    Pratt S; Yuan Z; Keller J
    Biotechnol Bioeng; 2004 Oct; 88(2):135-47. PubMed ID: 15449301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamic acid removal and PHB storage in the activated sludge process under dynamic conditions.
    Dionisi D; Majone M; Miccheli A; Puccetti C; Sinisi C
    Biotechnol Bioeng; 2004 Jun; 86(7):842-51. PubMed ID: 15162461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated metabolic model for the aerobic and denitrifying biological phosphorus removal.
    Murnleitner E; Kuba T; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1997 Jun; 54(5):434-50. PubMed ID: 18634136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process.
    Smolders GJ; van der Meij J; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1994 Sep; 44(7):837-48. PubMed ID: 18618851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based data evaluation of polyhydroxybutyrate producing mixed microbial cultures in aerobic sequencing batch and fed-batch reactors.
    Johnson K; Kleerebezem R; van Loosdrecht MC
    Biotechnol Bioeng; 2009 Sep; 104(1):50-67. PubMed ID: 19472301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temperature effects on glycogen accumulating organisms.
    Lopez-Vazquez CM; Hooijmans CM; Brdjanovic D; Gijzen HJ; van Loosdrecht MC
    Water Res; 2009 Jun; 43(11):2852-64. PubMed ID: 19380157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-based evaluation of competition between polyphosphate- and glycogen-accumulating organisms.
    Whang LM; Filipe CD; Park JK
    Water Res; 2007 Mar; 41(6):1312-24. PubMed ID: 17275874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge.
    Wichern M; Lübken M; Horn H
    Water Sci Technol; 2008; 58(6):1199-206. PubMed ID: 18845857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Could polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)?
    Zhou Y; Pijuan M; Zeng RJ; Lu H; Yuan Z
    Water Res; 2008 May; 42(10-11):2361-8. PubMed ID: 18222522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal aerobic sludge retention time in biological phosphorus removal systems.
    Brdjanovic D; van Loosdrecht MC ; Hooijmans CM; Alaerts GJ; Heijnen JJ
    Biotechnol Bioeng; 1998 Nov; 60(3):326-32. PubMed ID: 10099435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model of the anaerobic metabolism of the biological phosphorus removal process: Stoichiometry and pH influence.
    Smolders GJ; van der Meij J; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1994 Mar; 43(6):461-70. PubMed ID: 18615742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-scale metabolic modeling to provide insight into the production of storage compounds during feast-famine cycles of activated sludge.
    Tajparast M; Frigon D
    Water Sci Technol; 2013; 67(3):469-76. PubMed ID: 23202549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A metabolic model for biological phosphorus removal by denitrifying organisms.
    Kuba T; Murnleitner E; van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1996 Dec; 52(6):685-95. PubMed ID: 18629947
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling using rRNA-structured biomass models.
    Lavallée B; Frigon D; Lessard P; Vanrolleghem PA; Yuan Z; van Loosdrecht MC
    Water Sci Technol; 2009; 59(4):661-71. PubMed ID: 19237760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time control strategy for simultaneous nitrogen and phosphorus removal using aerobic granular sludge.
    Kishida N; Tsuneda S; Sakakibara Y; Kim JH; Sudo R
    Water Sci Technol; 2008; 58(2):445-50. PubMed ID: 18701799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of aerobic granules and their PHB production at various substrate and ammonium concentrations.
    Fang F; Liu XW; Xu J; Yu HQ; Li YM
    Bioresour Technol; 2009 Jan; 100(1):59-63. PubMed ID: 18674897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.