BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 18623527)

  • 1. Bioleaching of pyrite by acidophilic thermophile Acidianus brierleyi.
    Konishi Y; Yoshida S; Asai S
    Biotechnol Bioeng; 1995 Dec; 48(6):592-600. PubMed ID: 18623527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of the bioleaching of chalcopyrite concentrate by acidophilic thermophile acidianus brierleyi.
    Konishi Y; Asai S; Tokushige M; Suzuki T
    Biotechnol Prog; 1999 Jul; 15(4):681-8. PubMed ID: 10441359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioleaching of zinc sulfide concentrate by Thiobacillus ferrooxidans.
    Konishi Y; Kubo H; Asai S
    Biotechnol Bioeng; 1992 Jan; 39(1):66-74. PubMed ID: 18600888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of yeast extract supplementation in leach solution on bioleaching rate of pyrite by acidophilic thermophile acidianus brierleyi.
    Konishi Y; Yoshida S; Asai S
    Biotechnol Bioeng; 1998 Jun; 58(6):663-7. PubMed ID: 10099306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous microbial desulfurization of coal--application of a multistage slurry reactor and analysis of the interactions of microbial and chemical kinetics.
    Uhl W; Höne HJ; Beyer M; Klein J
    Biotechnol Bioeng; 1989 Dec; 34(11):1341-56. PubMed ID: 18588077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coal Depyritization by the Thermophilic Archaeon Metallosphaera sedula.
    Clark TR; Baldi F; Olson GJ
    Appl Environ Microbiol; 1993 Aug; 59(8):2375-9. PubMed ID: 16349006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking.
    Bharadwaj A; Ting YP
    Bioresour Technol; 2013 Feb; 130():673-80. PubMed ID: 23334026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth models of the continuous bacterial leaching of iron pyrite by Thiobacillus ferrooxidans.
    Chang YC; Myerson AS
    Biotechnol Bioeng; 1982 Apr; 24(4):889-902. PubMed ID: 18546378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relative contributions of biological and chemical reactions to the overall rate of pyrite oxidation at temperatures between 30 degrees C and 70 degrees C.
    Boogerd FC; van den Beemd C; Stoelwinder T; Bos P; Kuenen JG
    Biotechnol Bioeng; 1991 Jun; 38(2):109-15. PubMed ID: 18600740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms.
    Dopson M; Halinen AK; Rahunen N; Ozkaya B; Sahinkaya E; Kaksonen AH; Lindström EB; Puhakka JA
    Biotechnol Bioeng; 2007 Aug; 97(5):1205-15. PubMed ID: 17187443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SEM and AFM images of pyrite surfaces after bioleaching by the indigenous Thiobacillus thiooxidans.
    Liu HL; Chen BY; Lan YW; Cheng YC
    Appl Microbiol Biotechnol; 2003 Sep; 62(4):414-20. PubMed ID: 12719934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of growth and elemental sulfur oxidation in batch culture of thiobacillus ferrooxidans.
    Konishi Y; Takasaka Y; Asai S
    Biotechnol Bioeng; 1994 Sep; 44(6):667-73. PubMed ID: 18618826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation.
    Tao H; Dongwei L
    Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of growth and ferrous iron oxidation rates of T. Ferrooxidans by electrochemical reduction of ferric iron.
    Yunker SB; Radovich JM
    Biotechnol Bioeng; 1986 Dec; 28(12):1867-75. PubMed ID: 18555304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spp. and Sulfolobus metallicus.
    Castro C; Zhang R; Liu J; Bellenberg S; Neu TR; Donati E; Sand W; Vera M
    Res Microbiol; 2016 Sep; 167(7):604-12. PubMed ID: 27388200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of microbial flotation using Thiobacillus ferrooxidans for pyrite suppression.
    Ohmura N; Kitamura K; Saiki H
    Biotechnol Bioeng; 1993 Mar; 41(6):671-6. PubMed ID: 18609604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans.
    Natarajan KA
    Biotechnol Bioeng; 1992 Apr; 39(9):907-13. PubMed ID: 18601028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Suppression of pyrite oxidation by iron 8-hydroxyquinoline.
    Lan Y; Huang X; Deng B
    Arch Environ Contam Toxicol; 2002 Aug; 43(2):168-74. PubMed ID: 12115042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of epifluorescence microscopy for characterizing the activity of Thiobacillus Ferrooxidans on iron pyrite.
    Yeh TY; Godshalk JR; Olson GJ; Kelly RM
    Biotechnol Bioeng; 1987 Jul; 30(1):138-46. PubMed ID: 18576593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.