These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
49 related articles for article (PubMed ID: 18623541)
1. The kinetics of RCC1 inclusion body formation in Escherichia Coli. Tsai AM; Betenbaugh MJ; Shiloach J Biotechnol Bioeng; 1995 Dec; 48(6):715-8. PubMed ID: 18623541 [TBL] [Abstract][Full Text] [Related]
2. Expression of aggregation-prone recombinant proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac promoter systems. Vasina JA; Baneyx F Protein Expr Purif; 1997 Mar; 9(2):211-8. PubMed ID: 9056486 [TBL] [Abstract][Full Text] [Related]
3. The conformational quality of insoluble recombinant proteins is enhanced at low growth temperatures. Vera A; González-Montalbán N; Arís A; Villaverde A Biotechnol Bioeng; 2007 Apr; 96(6):1101-6. PubMed ID: 17013944 [TBL] [Abstract][Full Text] [Related]
4. Kinetics of heat-shock response and inclusion body formation during temperature-induced production of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli. Hoffmann F; Rinas U Biotechnol Prog; 2000; 16(6):1000-7. PubMed ID: 11101327 [TBL] [Abstract][Full Text] [Related]
5. Enhanced production of human mini-proinsulin in fed-batch cultures at high cell density of Escherichia coli BL21(DE3)[pET-3aT2M2]. Shin CS; Hong MS; Bae CS; Lee J Biotechnol Prog; 1997; 13(3):249-57. PubMed ID: 9190075 [TBL] [Abstract][Full Text] [Related]
6. Impact of different cultivation and induction regimes on the structure of cytosolic inclusion bodies of TEM1-beta-lactamase. Margreiter G; Schwanninger M; Bayer K; Obinger C Biotechnol J; 2008 Oct; 3(9-10):1245-55. PubMed ID: 18702088 [TBL] [Abstract][Full Text] [Related]
7. DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Chen Y; Song J; Sui SF; Wang DN Protein Expr Purif; 2003 Dec; 32(2):221-31. PubMed ID: 14965767 [TBL] [Abstract][Full Text] [Related]
8. The 1.7 A crystal structure of the regulator of chromosome condensation (RCC1) reveals a seven-bladed propeller. Renault L; Nassar N; Vetter I; Becker J; Klebe C; Roth M; Wittinghofer A Nature; 1998 Mar; 392(6671):97-101. PubMed ID: 9510255 [TBL] [Abstract][Full Text] [Related]
9. Optimized production of active alpha-glucosidase by recombinant Escherichia coli. evaluation of processes using in vivo reactivation from inclusion bodies. Le Thanh H; Hoffmann F Biotechnol Prog; 2005; 21(4):1053-61. PubMed ID: 16080683 [TBL] [Abstract][Full Text] [Related]
10. Cultivation at 6-10°C is an effective strategy to overcome the insolubility of recombinant proteins in Escherichia coli. Song JM; An YJ; Kang MH; Lee YH; Cha SS Protein Expr Purif; 2012 Apr; 82(2):297-301. PubMed ID: 22333528 [TBL] [Abstract][Full Text] [Related]
11. Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Bischoff FR; Ponstingl H Nature; 1991 Nov; 354(6348):80-2. PubMed ID: 1944575 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of inclusion body formation studied in intact cells by FT-IR spectroscopy. Ami D; Natalello A; Gatti-Lafranconi P; Lotti M; Doglia SM FEBS Lett; 2005 Jun; 579(16):3433-6. PubMed ID: 15949804 [TBL] [Abstract][Full Text] [Related]
13. Renaturation of Escherichia coli-derived recombinant human macrophage colony-stimulating factor. Tran-Moseman A; Schauer N; De Bernardez Clark E Protein Expr Purif; 1999 Jun; 16(1):181-9. PubMed ID: 10336876 [TBL] [Abstract][Full Text] [Related]
14. Crystallization and preliminary X-ray analysis of human RCC1, the regulator of chromosome condensation. Renault L; Nassar N; Wittinghofer A; Roth M; Vetter IR Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):272-5. PubMed ID: 10089422 [TBL] [Abstract][Full Text] [Related]
15. Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948. Shuo-shuo C; Xue-zheng L; Ji-hong S Protein Expr Purif; 2011 Jun; 77(2):166-72. PubMed ID: 21272645 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional response of Escherichia coli to temperature shift. Gadgil M; Kapur V; Hu WS Biotechnol Prog; 2005; 21(3):689-99. PubMed ID: 15932244 [TBL] [Abstract][Full Text] [Related]
17. Model of the ran-RCC1 interaction using biochemical and docking experiments. Azuma Y; Renault L; García-Ranea JA; Valencia A; Nishimoto T; Wittinghofer A J Mol Biol; 1999 Jun; 289(4):1119-30. PubMed ID: 10369786 [TBL] [Abstract][Full Text] [Related]
18. Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli. Thomas JG; Baneyx F Protein Expr Purif; 1997 Dec; 11(3):289-96. PubMed ID: 9425634 [TBL] [Abstract][Full Text] [Related]
19. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443 [TBL] [Abstract][Full Text] [Related]
20. The behaviour of log phase Escherichia coli at temperatures that fluctuate about the minimum for growth. Jones T; Gill CO; McMullen LM Lett Appl Microbiol; 2004; 39(3):296-300. PubMed ID: 15287878 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]