These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 18623556)

  • 1. Transient and stationary operating conditions on performance of lactic acid bacteria crossflow microfiltration.
    Boyaval P; Lavenant C; Gésan G; Daufin G
    Biotechnol Bioeng; 1996 Jan; 49(1):78-86. PubMed ID: 18623556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfiltration of recombinant yeast cells using a rotating disk dynamic filtration system.
    Lee SS; Burt A; Russotti G; Buckland B
    Biotechnol Bioeng; 1995 Nov; 48(4):386-400. PubMed ID: 18623499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pore size, shear rate, and harvest time during the constant permeate flux microfiltration of CHO cell culture supernatant.
    Stressmann M; Moresoli C
    Biotechnol Prog; 2008; 24(4):890-7. PubMed ID: 19194898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions.
    Hong S; Faibish RS; Elimelech M
    J Colloid Interface Sci; 1997 Dec; 196(2):267-277. PubMed ID: 9792752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Interparticle Electrostatic Double Layer Interactions on Permeate Flux Decline in Crossflow Membrane Filtration of Colloidal Suspensions: An Experimental Investigation.
    Faibish RS; Elimelech M; Cohen Y
    J Colloid Interface Sci; 1998 Aug; 204(1):77-86. PubMed ID: 9665769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crossflow microfiltration of yeast suspensions in tubular filters.
    Redkar SG; Davis RH
    Biotechnol Prog; 1993; 9(6):625-34. PubMed ID: 7764351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of membrane length, membrane resistance, and filtration conditions on the fractionation of milk proteins by microfiltration.
    Piry A; Heino A; Kühnl W; Grein T; Ripperger S; Kulozik U
    J Dairy Sci; 2012 Apr; 95(4):1590-602. PubMed ID: 22459807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Combined Pore Blockage and Cake Filtration Model for Protein Fouling during Microfiltration.
    Ho CC; Zydney AL
    J Colloid Interface Sci; 2000 Dec; 232(2):389-399. PubMed ID: 11097775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of added yeast on protein transmission and flux in cross-flow membrane microfiltration.
    Kuberkar VT; Davis RH
    Biotechnol Prog; 1999 May; 15(3):472-9. PubMed ID: 10356265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting the performance of crossflow filtration of yeast cell suspension.
    Tanaka T; Kamimura R; Itoh K; Nakanishi K; Matsuno R
    Biotechnol Bioeng; 1993 Mar; 41(6):617-24. PubMed ID: 18609597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sinusoidal crossflow microfiltration device--experimental and computational flowfield analysis.
    Mielnik MM; Ekatpure RP; Saetran LR; Schönfeld F
    Lab Chip; 2005 Aug; 5(8):897-903. PubMed ID: 16027942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel filtration mode for fouling limitation in membrane bioreactors.
    Wu J; Le-Clech P; Stuetz RM; Fane AG; Chen V
    Water Res; 2008 Aug; 42(14):3677-84. PubMed ID: 18662821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossflow microfiltration of animal cells.
    Maiorella B; Dorin G; Carion A; Harano D
    Biotechnol Bioeng; 1991 Jan; 37(2):121-6. PubMed ID: 18597348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of operational parameters on cake formation of CaSO4 in nanofiltration.
    Lin CJ; Shirazi S; Rao P; Agarwal S
    Water Res; 2006 Feb; 40(4):806-16. PubMed ID: 16427114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfiltration of yeast suspensions with self-cleaning spiral vortices: possibilities for a new membrane module design.
    Mallubhotla H; Nunes E; Belfort G
    Biotechnol Bioeng; 1995 Nov; 48(4):375-85. PubMed ID: 18623498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of lactic acid-producing bacteria from fermentation broth using a ceramic microfiltration membrane with constant permeate flow.
    Persson A; Jönsson AS; Zacchi G
    Biotechnol Bioeng; 2001 Feb; 72(3):269-77. PubMed ID: 11135196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pilot-scale harvest of recombinant yeast employing microfiltration: a case study.
    Russotti G; Osawa AE; Sitrin RD; Buckland BC; Adams WR; Lee SS
    J Biotechnol; 1995 Oct; 42(3):235-46. PubMed ID: 7576542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new coiled hollow-fiber module design for enhanced microfiltration performance in biotechnology.
    Luque S; Mallubhotla H; Gehlert G; Kuriyel R; Dzengeleski S; Pearl S; Belfort G
    Biotechnol Bioeng; 1999 Nov; 65(3):247-57. PubMed ID: 10486122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fouling effects of yeast culture with antifoam agents on microfilters.
    Liew MK; Fane AG; Rogers PL
    Biotechnol Bioeng; 1997 Jan; 53(1):10-6. PubMed ID: 18629953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crossflow filtration of yeast broth cultivated in molasses.
    Tanaka T; Kamimura R; Fujiwara R; Nakanishi K
    Biotechnol Bioeng; 1994 May; 43(11):1094-101. PubMed ID: 18615521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.