These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 18624396)

  • 1. Influence of conformational flexibility on complexation-induced changes in chemical shift in a neocarzinostatin protein-ligand complex.
    Cioffi M; Hunter CA; Packer MJ
    J Med Chem; 2008 Aug; 51(15):4488-95. PubMed ID: 18624396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of protein-ligand binding modes using complexation-induced changes in (1)h NMR chemical shift.
    Cioffi M; Hunter CA; Packer MJ; Spitaleri A
    J Med Chem; 2008 Apr; 51(8):2512-7. PubMed ID: 18366177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How much NMR data is required to determine a protein-ligand complex structure?
    Schieborr U; Vogtherr M; Elshorst B; Betz M; Grimme S; Pescatore B; Langer T; Saxena K; Schwalbe H
    Chembiochem; 2005 Oct; 6(10):1891-8. PubMed ID: 16013076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking.
    Smith GR; Sternberg MJ; Bates PA
    J Mol Biol; 2005 Apr; 347(5):1077-101. PubMed ID: 15784265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating protein structures determined by structural genomics consortia.
    Bhattacharya A; Tejero R; Montelione GT
    Proteins; 2007 Mar; 66(4):778-95. PubMed ID: 17186527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The impact of protein flexibility on protein-protein docking.
    Ehrlich LP; Nilges M; Wade RC
    Proteins; 2005 Jan; 58(1):126-33. PubMed ID: 15515181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of in vitro evolved binding sites on neocarzinostatin scaffold reveal unanticipated evolutionary pathways.
    Drevelle A; Graille M; Heyd B; Sorel I; Ulryck N; Pecorari F; Desmadril M; van Tilbeurgh H; Minard P
    J Mol Biol; 2006 Apr; 358(2):455-71. PubMed ID: 16529771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective handling of induced-fit motion in flexible docking.
    Mizutani MY; Takamatsu Y; Ichinose T; Nakamura K; Itai A
    Proteins; 2006 Jun; 63(4):878-91. PubMed ID: 16532451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexibility and conformational entropy in protein-protein binding.
    Grünberg R; Nilges M; Leckner J
    Structure; 2006 Apr; 14(4):683-93. PubMed ID: 16615910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein-ligand NOE matching: a high-throughput method for binding pose evaluation that does not require protein NMR resonance assignments.
    Constantine KL; Davis ME; Metzler WJ; Mueller L; Claus BL
    J Am Chem Soc; 2006 Jun; 128(22):7252-63. PubMed ID: 16734479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid protein-ligand costructures using chemical shift perturbations.
    Stark J; Powers R
    J Am Chem Soc; 2008 Jan; 130(2):535-45. PubMed ID: 18088118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated protein structure determination from NMR spectra.
    López-Méndez B; Güntert P
    J Am Chem Soc; 2006 Oct; 128(40):13112-22. PubMed ID: 17017791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereospecific assignments of protein NMR resonances based on the tertiary structure and 2D/3D NOE data.
    Pristovsek P; Franzoni L
    J Comput Chem; 2006 Apr; 27(6):791-7. PubMed ID: 16526035
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular flexibility in protein-DNA interactions.
    Günther S; Rother K; Frömmel C
    Biosystems; 2006 Aug; 85(2):126-36. PubMed ID: 16488073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring experimental sources of multiple protein conformations in structure-based drug design.
    Damm KL; Carlson HA
    J Am Chem Soc; 2007 Jul; 129(26):8225-35. PubMed ID: 17555316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A systematic analysis of the effect of small-molecule binding on protein flexibility of the ligand-binding sites.
    Yang CY; Wang R; Wang S
    J Med Chem; 2005 Sep; 48(18):5648-50. PubMed ID: 16134931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data.
    Kitao A; Wagner G
    Magn Reson Chem; 2006 Jul; 44 Spec No():S130-42. PubMed ID: 16823895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased protein backbone conformational entropy upon hydrophobic ligand binding.
    Zídek L; Novotny MV; Stone MJ
    Nat Struct Biol; 1999 Dec; 6(12):1118-21. PubMed ID: 10581552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic mechanism of cyclophilin as observed in molecular dynamics simulations: pathway prediction and reconciliation of X-ray crystallographic and NMR solution data.
    Trzesniak D; van Gunsteren WF
    Protein Sci; 2006 Nov; 15(11):2544-51. PubMed ID: 17075133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and ligand binding of the extended Tudor domain of D. melanogaster Tudor-SN.
    Friberg A; Corsini L; Mourão A; Sattler M
    J Mol Biol; 2009 Apr; 387(4):921-34. PubMed ID: 19232356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.