BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 18624440)

  • 1. Correlations between the amounts of free asparagine and saccharides present in commercial cereal flours in the United Kingdom and the generation of acrylamide during cooking.
    Hamlet CG; Sadd PA; Liang L
    J Agric Food Chem; 2008 Aug; 56(15):6145-53. PubMed ID: 18624440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Free amino acids and sugars in rye grain: implications for acrylamide formation.
    Curtis TY; Powers SJ; Balagiannis D; Elmore JS; Mottram DS; Parry MA; Rakszegi M; Bedö Z; Shewry PR; Halford NG
    J Agric Food Chem; 2010 Feb; 58(3):1959-69. PubMed ID: 20055414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of sulfur fertilization on the amounts of free amino acids in wheat. correlation with baking properties as well as with 3-aminopropionamide and acrylamide generation during baking.
    Granvogl M; Wieser H; Koehler P; Tucher SV; Schieberle P
    J Agric Food Chem; 2007 May; 55(10):4271-7. PubMed ID: 17455956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions.
    Žilić S; Aktağ IG; Dodig D; Filipović M; Gökmen V
    Food Res Int; 2020 Jun; 132():109109. PubMed ID: 32331630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free asparagine and sugars profile of cereal species: the potential of cereals for acrylamide formation in foods.
    Žilić S; Dodig D; Basić Z; Vančetović J; Titan P; Đurić N; Tolimir N
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 May; 34(5):705-713. PubMed ID: 28150529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of methods for reducing acrylamide in bakery products.
    Sadd PA; Hamlet CG; Liang L
    J Agric Food Chem; 2008 Aug; 56(15):6154-61. PubMed ID: 18624450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of genotype and environment on free amino acid levels in wheat grain: implications for acrylamide formation during processing.
    Curtis TY; Muttucumaru N; Shewry PR; Parry MA; Powers SJ; Elmore JS; Mottram DS; Hook S; Halford NG
    J Agric Food Chem; 2009 Feb; 57(3):1013-21. PubMed ID: 19143525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of acrylamide in UK cereal products.
    Sadd P; Hamlet C
    Adv Exp Med Biol; 2005; 561():415-29. PubMed ID: 16438316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Potential of acrylamide formation, sugars, and free asparagine in potatoes: a comparison of cultivars and farming systems.
    Amrein TM; Bachmann S; Noti A; Biedermann M; Barbosa MF; Biedermann-Brem S; Grob K; Keiser A; Realini P; Escher F; Amadó R
    J Agric Food Chem; 2003 Aug; 51(18):5556-60. PubMed ID: 12926914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of harvest year on amino acids and sugars in potatoes and effect on acrylamide formation during frying.
    Viklund GA; Olsson KM; Sjöholm IM; Skog KI
    J Agric Food Chem; 2008 Aug; 56(15):6180-4. PubMed ID: 18624433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adding pulse flours to cereal-based snacks and bakery products: An overview of free asparagine quantification methods and mitigation strategies of acrylamide formation in foods.
    Sá AGA; House JD
    Compr Rev Food Sci Food Saf; 2024 Jan; 23(1):e13260. PubMed ID: 38284574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentrations of free amino acids and sugars in nine potato varieties: effects of storage and relationship with acrylamide formation.
    Halford NG; Muttucumaru N; Powers SJ; Gillatt PN; Hartley L; Elmore JS; Mottram DS
    J Agric Food Chem; 2012 Dec; 60(48):12044-55. PubMed ID: 23126451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acrylamide in French fries: influence of free amino acids and sugars.
    Becalski A; Lau BP; Lewis D; Seaman SW; Hayward S; Sahagian M; Ramesh M; Leclerc Y
    J Agric Food Chem; 2004 Jun; 52(12):3801-6. PubMed ID: 15186100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acrylamide-asparagine relationship in baked/toasted wheat and rye breads.
    Granby K; Nielsen NJ; Hedegaard RV; Christensen T; Kann M; Skibsted LH
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Aug; 25(8):921-9. PubMed ID: 18608496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acrylamide and 5-hydroxymethylfurfural formation during biscuit baking. Part II: Effect of the ratio of reducing sugars and asparagine.
    Nguyen HT; van der Fels-Klerx HJI; van Boekel MAJS
    Food Chem; 2017 Sep; 230():14-23. PubMed ID: 28407894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acrylamide-forming potential of potatoes grown at different locations, and the ratio of free asparagine to reducing sugars at which free asparagine becomes a limiting factor for acrylamide formation.
    Muttucumaru N; Powers SJ; Elmore JS; Dodson A; Briddon A; Mottram DS; Halford NG
    Food Chem; 2017 Apr; 220():76-86. PubMed ID: 27855938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of acrylamide and its precursors in potato, wheat, and rye model systems.
    Elmore JS; Koutsidis G; Dodson AT; Mottram DS; Wedzicha BL
    J Agric Food Chem; 2005 Feb; 53(4):1286-93. PubMed ID: 15713054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread.
    Surdyk N; Rosén J; Andersson R; Aman P
    J Agric Food Chem; 2004 Apr; 52(7):2047-51. PubMed ID: 15053550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors influencing acrylamide content and color in rye crisp bread.
    Mustafa A; Andersson R; Rosén J; Kamal-Eldin A; Aman P
    J Agric Food Chem; 2005 Jul; 53(15):5985-9. PubMed ID: 16028985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compositions of phenolic compounds, amino acids and reducing sugars in commercial potato varieties and their effects on acrylamide formation.
    Zhu F; Cai YZ; Ke J; Corke H
    J Sci Food Agric; 2010 Oct; 90(13):2254-62. PubMed ID: 20629114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.