These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
608 related articles for article (PubMed ID: 18624453)
1. Sequential interpenetrating polymer networks produced from vegetable oil based polyurethane and poly(methyl methacrylate). Kong X; Narine SS Biomacromolecules; 2008 Aug; 9(8):2221-9. PubMed ID: 18624453 [TBL] [Abstract][Full Text] [Related]
2. Physical properties of sequential interpenetrating polymer networks produced from canola oil-based polyurethane and poly(methyl methacrylate). Kong X; Narine SS Biomacromolecules; 2008 May; 9(5):1424-33. PubMed ID: 18410139 [TBL] [Abstract][Full Text] [Related]
3. Soybean-oil-based waterborne polyurethane dispersions: effects of polyol functionality and hard segment content on properties. Lu Y; Larock RC Biomacromolecules; 2008 Nov; 9(11):3332-40. PubMed ID: 18937404 [TBL] [Abstract][Full Text] [Related]
4. Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Chang Y; Chen S; Yu Q; Zhang Z; Bernards M; Jiang S Biomacromolecules; 2007 Jan; 8(1):122-7. PubMed ID: 17206797 [TBL] [Abstract][Full Text] [Related]
5. Effects of molecular weight on the miscibility and properties of polyurethane/benzyl starch semi-interpenetrating polymer networks. Cao X; Zhang L Biomacromolecules; 2005; 6(2):671-7. PubMed ID: 15762628 [TBL] [Abstract][Full Text] [Related]
6. Effects of ethyl and benzyl groups on the miscibility and properties of castor oil-based polyurethane/starch derivative semi-interpenetrating polymer networks. Cao X; Wang Y; Zhang L Macromol Biosci; 2005 Sep; 5(9):863-71. PubMed ID: 16143996 [TBL] [Abstract][Full Text] [Related]
7. New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization. Lu Y; Larock RC Biomacromolecules; 2007 Oct; 8(10):3108-14. PubMed ID: 17877401 [TBL] [Abstract][Full Text] [Related]
8. Effect of rigid rod polymer filler on mechanical properties of poly-methyl methacrylate denture base material. Vuorinen AM; Dyer SR; Lassila LV; Vallittu PK Dent Mater; 2008 May; 24(5):708-13. PubMed ID: 17888507 [TBL] [Abstract][Full Text] [Related]
9. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin. Ding F; Hsu SH; Wu DH; Chiang WY J Biomater Sci Polym Ed; 2009; 20(5-6):605-18. PubMed ID: 19323879 [TBL] [Abstract][Full Text] [Related]
10. Interpenetrating polymer networks as a route to tunable multi-responsive biomaterials: development of novel concepts. Kris Kostanski L; Huang R; Filipe CD; Ghosh R J Biomater Sci Polym Ed; 2009; 20(3):271-97. PubMed ID: 19192356 [TBL] [Abstract][Full Text] [Related]
11. Development of biomedical porous titanium filled with medical polymer by in-situ polymerization of monomer solution infiltrated into pores. Nakai M; Niinomi M; Akahori T; Tsutsumi H; Itsuno S; Haraguchi N; Itoh Y; Ogasawara T; Onishi T; Shindoh T J Mech Behav Biomed Mater; 2010 Jan; 3(1):41-50. PubMed ID: 19878901 [TBL] [Abstract][Full Text] [Related]
12. Compatibilization by homopolymer: significant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAc. Li Y; Shimizu H ACS Appl Mater Interfaces; 2009 Aug; 1(8):1650-5. PubMed ID: 20355779 [TBL] [Abstract][Full Text] [Related]
13. Structure and properties of polyurethanes prepared from triglyceride polyols by ozonolysis. Petrović ZS; Zhang W; Javni I Biomacromolecules; 2005; 6(2):713-9. PubMed ID: 15762634 [TBL] [Abstract][Full Text] [Related]
14. Glucose permeable poly (dimethyl siloxane) poly (N-isopropyl acrylamide) interpenetrating networks as ophthalmic biomaterials. Liu L; Sheardown H Biomaterials; 2005 Jan; 26(3):233-44. PubMed ID: 15262466 [TBL] [Abstract][Full Text] [Related]
15. Mechanical and thermal properties of hydroxyaptite filled poly (methyl methacrylate) heat processed denture base material. Mohamed SH; Arifin A; Mohd Ishak ZA; Nizam A; Samsudin AR Med J Malaysia; 2004 May; 59 Suppl B():25-6. PubMed ID: 15468801 [TBL] [Abstract][Full Text] [Related]
16. Long-term in vivo biostability of poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomers. Simmons A; Hyvarinen J; Odell RA; Martin DJ; Gunatillake PA; Noble KR; Poole-Warren LA Biomaterials; 2004 Sep; 25(20):4887-900. PubMed ID: 15109849 [TBL] [Abstract][Full Text] [Related]
17. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization. Lligadas G; Ronda JC; Galià M; Cádiz V Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and physicochemical analysis of interpenetrating networks containing modified gelatin and poly(ethylene glycol) diacrylate. Burmania JA; Martinez-Diaz GJ; Kao WJ J Biomed Mater Res A; 2003 Oct; 67(1):224-34. PubMed ID: 14517880 [TBL] [Abstract][Full Text] [Related]
19. PMMA-grafted nanoclay as novel filler for dental adhesives. Atai M; Solhi L; Nodehi A; Mirabedini SM; Kasraei S; Akbari K; Babanzadeh S Dent Mater; 2009 Mar; 25(3):339-47. PubMed ID: 18829096 [TBL] [Abstract][Full Text] [Related]
20. Thermosensitive transparent semi-interpenetrating polymer networks for wound dressing and cell adhesion control. Reddy TT; Kano A; Maruyama A; Hadano M; Takahara A Biomacromolecules; 2008 Apr; 9(4):1313-21. PubMed ID: 18355026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]