These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 18624454)

  • 21. Hydrogels as Potential Nano-, Micro- and Macro-Scale Systems for Controlled Drug Delivery.
    Chyzy A; Tomczykowa M; Plonska-Brzezinska ME
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31906527
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water.
    Rho JY; Cox H; Mansfield EDH; Ellacott SH; Peltier R; Brendel JC; Hartlieb M; Waigh TA; Perrier S
    Nat Commun; 2019 Oct; 10(1):4708. PubMed ID: 31624265
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzyme Entrapment in Amphiphilic Myristyl-Phenylalanine Hydrogels.
    Falcone N; Shao T; Rashid R; Kraatz HB
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31398913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Magnetic Dehydrodipeptide-Based Self-Assembled Hydrogels for Theragnostic Applications.
    Carvalho A; Gallo J; Pereira DM; Valentão P; Andrade PB; Hilliou L; Ferreira PMT; Bañobre-López M; Martins JA
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30987203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assembly of a Tripeptide and Anti-Inflammatory Drugs into Supramolecular Hydrogels for Sustained Release.
    Kurbasic M; Romano CD; Garcia AM; Kralj S; Marchesan S
    Gels; 2017 Aug; 3(3):. PubMed ID: 30920525
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multicomponent peptide assemblies.
    Raymond DM; Nilsson BL
    Chem Soc Rev; 2018 May; 47(10):3659-3720. PubMed ID: 29697126
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Responsive Hybrid (Poly)peptide-Polymer Conjugates.
    Paik BA; Mane SR; Jia X; Kiick KL
    J Mater Chem B; 2017; 5(42):8274-8288. PubMed ID: 29430300
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A unique thermo-induced gel-to-gel transition in a pH-sensitive small-molecule hydrogel.
    Xie H; Asad Ayoubi M; Lu W; Wang J; Huang J; Wang W
    Sci Rep; 2017 Aug; 7(1):8459. PubMed ID: 28814804
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent trends on hydrogel based drug delivery systems for infectious diseases.
    Vashist A; Kaushik A; Vashist A; Jayant RD; Tomitaka A; Ahmad S; Gupta YK; Nair M
    Biomater Sci; 2016 Oct; 4(11):1535-1553. PubMed ID: 27709137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. "A novel highly stable and injectable hydrogel based on a conformationally restricted ultrashort peptide".
    Thota CK; Yadav N; Chauhan VS
    Sci Rep; 2016 Aug; 6():31167. PubMed ID: 27507432
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembled phenylalanine-α,β-dehydrophenylalanine nanotubes for sustained intravitreal delivery of a multi-targeted tyrosine kinase inhibitor.
    Panda JJ; Yandrapu S; Kadam RS; Chauhan VS; Kompella UB
    J Control Release; 2013 Dec; 172(3):1151-60. PubMed ID: 24075925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable size and spectral properties of fluorescent nanoGUMBOS in modified sodium deoxycholate hydrogels.
    Das S; de Rooy SL; Jordan AN; Chandler L; Negulescu II; El-Zahab B; Warner IM
    Langmuir; 2012 Jan; 28(1):757-65. PubMed ID: 22112262
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zinc-triggered hydrogelation of a self-assembling β-hairpin peptide.
    Micklitsch CM; Knerr PJ; Branco MC; Nagarkar R; Pochan DJ; Schneider JP
    Angew Chem Int Ed Engl; 2011 Feb; 50(7):1577-9. PubMed ID: 21308908
    [No Abstract]   [Full Text] [Related]  

  • 34. Self-assembly of phenylalanine oligopeptides: insights from experiments and simulations.
    Tamamis P; Adler-Abramovich L; Reches M; Marshall K; Sikorski P; Serpell L; Gazit E; Archontis G
    Biophys J; 2009 Jun; 96(12):5020-9. PubMed ID: 19527662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stimuli responsive self-assembled hydrogel of a low molecular weight free dipeptide with potential for tunable drug delivery.
    Panda JJ; Mishra A; Basu A; Chauhan VS
    Biomacromolecules; 2008 Aug; 9(8):2244-50. PubMed ID: 18624454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanovesicles based on self-assembly of conformationally constrained aromatic residue containing amphiphilic dipeptides.
    Mishra A; Panda JJ; Basu A; Chauhan VS
    Langmuir; 2008 May; 24(9):4571-6. PubMed ID: 18358051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Programmable delivery of hydrophilic drug using dually responsive hydrogel cages.
    Gu J; Xia F; Wu Y; Qu X; Yang Z; Jiang L
    J Control Release; 2007 Feb; 117(3):396-402. PubMed ID: 17239981
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A thermoresponsive hydrogel based on telechelic PEG end-capped with hydrophobic dipeptides.
    Hamley IW; Cheng G; Castelletto V
    Macromol Biosci; 2011 Aug; 11(8):1068-78. PubMed ID: 21557478
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ gelling hydrogels for pharmaceutical and biomedical applications.
    Van Tomme SR; Storm G; Hennink WE
    Int J Pharm; 2008 May; 355(1-2):1-18. PubMed ID: 18343058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrogel nanoparticles in drug delivery.
    Hamidi M; Azadi A; Rafiei P
    Adv Drug Deliv Rev; 2008 Dec; 60(15):1638-49. PubMed ID: 18840488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.