These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 18624513)

  • 1. Calculating vibrational spectra using modified Shepard interpolated potential energy surfaces.
    Evenhuis CR; Manthe U
    J Chem Phys; 2008 Jul; 129(2):024104. PubMed ID: 18624513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locally optimized coordinates in modified Shepard interpolation.
    Evenhuis CR; Collins MA
    J Phys Chem A; 2009 Apr; 113(16):3979-87. PubMed ID: 19284774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A local interpolation scheme using no derivatives in potential sampling: application to O(1D) + H2 system.
    Ishida T; Schatz GC
    J Comput Chem; 2003 Jul; 24(9):1077-86. PubMed ID: 12759907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficiency considerations in the construction of interpolated potential energy surfaces for the calculation of quantum observables by diffusion Monte Carlo.
    Crittenden DL; Thompson KC; Chebib M; Jordan MJ
    J Chem Phys; 2004 Nov; 121(20):9844-54. PubMed ID: 15549857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpolated potential energy surfaces: How accurate do the second derivatives have to be?
    Crittenden DL; Jordan MJ
    J Chem Phys; 2005 Jan; 122(4):44102. PubMed ID: 15740230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hierarchy of potential energy surfaces constructed from energies and energy derivatives calculated on grids.
    Matito E; Toffoli D; Christiansen O
    J Chem Phys; 2009 Apr; 130(13):134104. PubMed ID: 19355714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate potential energy surface and quantum reaction rate calculations for the H+CH4-->H2+CH3 reaction.
    Wu T; Werner HJ; Manthe U
    J Chem Phys; 2006 Apr; 124(16):164307. PubMed ID: 16674135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the accuracy of interpolated potential energy surfaces by using an analytical zeroth-order potential function.
    Kawano A; Guo Y; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2004 Apr; 120(14):6414-22. PubMed ID: 15267530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the modified Shepard interpolation method to the determination of the potential energy surface for a molecule-surface reaction: H2 + Pt(111).
    Crespos C; Collins MA; Pijper E; Kroes GJ
    J Chem Phys; 2004 Feb; 120(5):2392-404. PubMed ID: 15268379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generating accurate dipole moment surfaces using modified Shepard interpolation.
    Morris M; Jordan MJ
    J Chem Phys; 2014 May; 140(20):204107. PubMed ID: 24880266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points.
    Dawes R; Thompson DL; Guo Y; Wagner AF; Minkoff M
    J Chem Phys; 2007 May; 126(18):184108. PubMed ID: 17508793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modified Shepard interpolation of gas-surface potential energy surfaces with strict plane group symmetry and translational periodicity.
    Frankcombe TJ; Collins MA; Zhang DH
    J Chem Phys; 2012 Oct; 137(14):144701. PubMed ID: 23061855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A scheme to interpolate potential energy surfaces and derivative coupling vectors without performing a global diabatization.
    Evenhuis C; Martínez TJ
    J Chem Phys; 2011 Dec; 135(22):224110. PubMed ID: 22168683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Moving least-squares enhanced Shepard interpolation for the fast marching and string methods.
    Burger SK; Liu Y; Sarkar U; Ayers PW
    J Chem Phys; 2009 Jan; 130(2):024103. PubMed ID: 19154015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient sampling for ab initio Monte Carlo simulation of molecular clusters using an interpolated potential energy surface.
    Nakayama A; Seki N; Taketsugu T
    J Chem Phys; 2009 Jan; 130(2):024107. PubMed ID: 19154019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic generation of potential energy and property surfaces of polyatomic molecules in normal coordinates.
    Toffoli D; Kongsted J; Christiansen O
    J Chem Phys; 2007 Nov; 127(20):204106. PubMed ID: 18052418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growing multiconfigurational potential energy surfaces with applications to X + H2 (X = C,N,O) reactions.
    Netzloff HM; Collins MA; Gordon MS
    J Chem Phys; 2006 Apr; 124(15):154104. PubMed ID: 16674215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient calculation of potential energy surfaces for the generation of vibrational wave functions.
    Rauhut G
    J Chem Phys; 2004 Nov; 121(19):9313-22. PubMed ID: 15538851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculating energy levels of isomerizing tetra-atomic molecules. II. The vibrational states of acetylene and vinylidene.
    Kozin IN; Law MM; Tennyson J; Hutson JM
    J Chem Phys; 2005 Feb; 122(6):064309. PubMed ID: 15740374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ab initio calculation of the photoelectron spectra of the hydroxycarbene diradicals.
    Koziol L; Mozhayskiy VA; Braams BJ; Bowman JM; Krylov AI
    J Phys Chem A; 2009 Jul; 113(27):7802-9. PubMed ID: 19569718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.