These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18624985)

  • 21. The cellular and molecular mechanism of glutaraldehyde-didecyldimethylammonium bromide as a disinfectant against Candida albicans.
    Lin W; Yuan D; Deng Z; Niu B; Chen Q
    J Appl Microbiol; 2019 Jan; 126(1):102-112. PubMed ID: 30365207
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HP (2-20) derived from the amino terminal region of helicobacterpylori ribosomal protein L1 exerts its antifungal effects by damaging the plasma membranes of Candida albicans.
    Lee DG; Kim PI; Park Y; Jang SH; Park SC; Woo ER; Hahm KS
    J Pept Sci; 2002 Aug; 8(8):453-60. PubMed ID: 12212808
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphological changes of Candida albicans induced by BMY-28864, a highly water-soluble pradimicin derivative.
    Numata K; Ueki T; Naito N; Yamada N; Kamasawa N; Oki T; Osumi M
    J Electron Microsc (Tokyo); 1993 Jun; 42(3):147-55. PubMed ID: 8376921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An antifungal mechanism of curcumin lies in membrane-targeted action within Candida albicans.
    Lee W; Lee DG
    IUBMB Life; 2014 Nov; 66(11):780-5. PubMed ID: 25380239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antimicrobial mechanisms of ortho-phthalaldehyde action.
    Simões M; Simões LC; Cleto S; Machado I; Pereira MO; Vieira MJ
    J Basic Microbiol; 2007 Jun; 47(3):230-42. PubMed ID: 17518416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrastructural effects of antimicrobial peptides from bovine lactoferrin on the membranes of Candida albicans and Escherichia coli.
    van der Kraan MI; van Marle J; Nazmi K; Groenink J; van 't Hof W; Veerman EC; Bolscher JG; Nieuw Amerongen AV
    Peptides; 2005 Sep; 26(9):1537-42. PubMed ID: 16112390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular response of the amoeba Acanthamoeba castellanii to chlorine, chlorine dioxide, and monochloramine treatments.
    Mogoa E; Bodet C; Morel F; Rodier MH; Legube B; Héchard Y
    Appl Environ Microbiol; 2011 Jul; 77(14):4974-80. PubMed ID: 21602398
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation and mechanisms of chlorine dioxide on Nosema bombycis.
    Wang Z; Liao F; Lin J; Li W; Zhong Y; Tan P; Huang Z
    J Invertebr Pathol; 2010 Jun; 104(2):134-9. PubMed ID: 20036671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histatin-induced alterations in Candida albicans: a microscopic and submicroscopic comparison.
    Isola R; Isola M; Conti G; Lantini MS; Riva A
    Microsc Res Tech; 2007 Jul; 70(7):607-16. PubMed ID: 17279506
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production and stability of chlorine dioxide in organic acid solutions as affected by pH, type of acid, and concentration of sodium chlorite, and its effectiveness in inactivating Bacillus cereus spores.
    Kim H; Kang Y; Beuchat LR; Ryu JH
    Food Microbiol; 2008 Dec; 25(8):964-9. PubMed ID: 18954731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chlorine dioxide is a size-selective antimicrobial agent.
    Noszticzius Z; Wittmann M; Kály-Kullai K; Beregvári Z; Kiss I; Rosivall L; Szegedi J
    PLoS One; 2013; 8(11):e79157. PubMed ID: 24223899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antifungal activity and mode of action of silver nano-particles on Candida albicans.
    Kim KJ; Sung WS; Suh BK; Moon SK; Choi JS; Kim JG; Lee DG
    Biometals; 2009 Apr; 22(2):235-42. PubMed ID: 18769871
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The 40-80 nt region in the 5'-NCR of genome is a critical target for inactivating poliovirus by chlorine dioxide.
    Jin M; Zhao ZG; Wang XW; Shen ZQ; Xu L; Yu YM; Qiu ZG; Chen ZL; Wang JF; Huang AH; Li JW
    J Med Virol; 2012 Mar; 84(3):526-35. PubMed ID: 22246842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Candidacidal mechanism of the arenicin-3-derived peptide NZ17074 from Arenicola marina.
    Wang X; Wang X; Teng D; Zhang Y; Mao R; Xi D; Wang J
    Appl Microbiol Biotechnol; 2014 Sep; 98(17):7387-98. PubMed ID: 24816779
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Damage to the cytoplasmic membrane and cell death caused by lycopene in Candida albicans.
    Sung WS; Lee IS; Lee DG
    J Microbiol Biotechnol; 2007 Nov; 17(11):1797-804. PubMed ID: 18092463
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of chlorine dioxide on selected membrane functions of Escherichia coli.
    Berg JD; Roberts PV; Matin A
    J Appl Bacteriol; 1986 Mar; 60(3):213-20. PubMed ID: 3519558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Freeze fracture electron microscopical investigation of Candida albicans cells sensitive and resistant to nystatin.
    Pesti M; Novák EK; Ferenczy L; Svoboda A
    Sabouraudia; 1981 Mar; 19(1):17-26. PubMed ID: 7013113
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fungitoxicity of muramidase. Ultrastructural damage to Candida albicans.
    Marquis G; Montplaisir S; Garzon S; Strykowski H; Auger P
    Lab Invest; 1982 Jun; 46(6):627-36. PubMed ID: 7045520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungicidal effect and the mode of action of piscidin 2 derived from hybrid striped bass.
    Sung WS; Lee J; Lee DG
    Biochem Biophys Res Commun; 2008 Jul; 371(3):551-5. PubMed ID: 18445475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis.
    Wood JP; Blair Martin G
    J Hazard Mater; 2009 May; 164(2-3):1460-7. PubMed ID: 18990488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.