BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18625296)

  • 1. The creation of geometric three-dimensional models of the inner ear based on micro computer tomography data.
    Poznyakovskiy AA; Zahnert T; Kalaidzidis Y; Schmidt R; Fischer B; Baumgart J; Yarin YM
    Hear Res; 2008 Sep; 243(1-2):95-104. PubMed ID: 18625296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A segmentation method to obtain a complete geometry model of the hearing organ.
    Poznyakovskiy AA; Zahnert T; Kalaidzidis Y; Lazurashvili N; Schmidt R; Hardtke HJ; Fischer B; Yarin YM
    Hear Res; 2011 Dec; 282(1-2):25-34. PubMed ID: 21782915
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metal staining, a comparative assessment of gadolinium chloride and osmium tetroxide for inner ear labyrinthine contrast enhancement using X-ray microtomography.
    Wong CC; Curthoys IS; O'Leary SJ; Jones AS
    Acta Otolaryngol; 2013 Jan; 133(1):22-7. PubMed ID: 22992040
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Registration of micro-computed tomography and histological images of the guinea pig cochlea to construct an ear model using an iterative closest point algorithm.
    Lee CF; Li GJ; Wan SY; Lee WJ; Tzen KY; Chen CH; Song YL; Chou YF; Chen YS; Liu TC
    Ann Biomed Eng; 2010 May; 38(5):1719-27. PubMed ID: 20162353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new approach to visualizing the membranous structures of the inner ear - high resolution X-ray micro-tomography.
    Uzun H; Curthoys IS; Jones AS
    Acta Otolaryngol; 2007 Jun; 127(6):568-73. PubMed ID: 17503224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional histological specimen preparation for accurate imaging and spatial reconstruction of the middle and inner ear.
    Rau TS; Würfel W; Lenarz T; Majdani O
    Int J Comput Assist Radiol Surg; 2013 Jul; 8(4):481-509. PubMed ID: 23633112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A preliminary study of three-dimensional reconstruction of the human osseous labyrinth from micro-computed tomography scans.
    Skrzat J; Wróbel A; Walocha J
    Folia Morphol (Warsz); 2013 Feb; 72(1):17-21. PubMed ID: 23749706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual labyrinthoscopy: visualization of the inner ear with interactive direct volume rendering.
    Tomandl BF; Hastreiter P; Eberhardt KE; Rezk-Salama C; Naraghi R; Greess H; Nissen U; Huk WJ
    Radiographics; 2000; 20(2):547-58. PubMed ID: 10715349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [3D reconstruction by high resolution MR tomography of the inner ear].
    Leuwer R; Schubert R; Siepmann G
    Laryngorhinootologie; 1993 Jun; 72(6):288-90. PubMed ID: 8333883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual perception of the osseous labyrinth rendered from micro-CT scans of the petrous bone.
    Skrzat J; Tarasiuk J; Wroński S; Kozerska M
    Folia Med Cracov; 2017; 57(4):5-12. PubMed ID: 29337973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution X-ray tomography of the human inner ear: synchrotron radiation-based study of nerve fibre bundles, membranes and ganglion cells.
    Lareida A; Beckmann F; Schrott-Fischer A; Glueckert R; Freysinger W; Müller B
    J Microsc; 2009 Apr; 234(1):95-102. PubMed ID: 19335460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional reconstruction of the guinea pig inner ear, comparison of OPFOS and light microscopy, applications of 3D reconstruction.
    Hofman R; Segenhout JM; Wit HP
    J Microsc; 2009 Feb; 233(2):251-7. PubMed ID: 19220691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normative inner ear volumetric measurements.
    Teixido MT; Kirkilas G; Seymour P; Sem K; Iaia A; Sabra O; Isildak H
    J Craniofac Surg; 2015 Jan; 26(1):251-4. PubMed ID: 25490572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simplified anatomical approach to thin section, high resolution CT of the ear and facial nerve.
    Hughes K
    Radiogr Today; 1990 Mar; 56(634):18-23. PubMed ID: 2363808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Micro-CT imaging of guinea pig cochlear].
    Sun CC; Jiang ZD; Zhang K
    Zhonghua Yi Xue Za Zhi; 2012 Dec; 92(48):3442-4. PubMed ID: 23327709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear pharmacokinetics with local inner ear drug delivery using a three-dimensional finite-element computer model.
    Plontke SK; Siedow N; Wegener R; Zenner HP; Salt AN
    Audiol Neurootol; 2007; 12(1):37-48. PubMed ID: 17119332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Labyrinth net: A robust segmentation method for inner ear labyrinth in CT images.
    Li X; Zhu Z; Yin H; Wang Z; Zhuo L; Zhou Y
    Comput Biol Med; 2022 Jul; 146():105630. PubMed ID: 35613514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging microscopy of the middle and inner ear: Part I: CT microscopy.
    Lane JI; Witte RJ; Driscoll CL; Camp JJ; Robb RA
    Clin Anat; 2004 Nov; 17(8):607-12. PubMed ID: 15495168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [An anatomic facsimile model with origin inner ear structures for temporal bone preparations].
    Vorwerk U; Grote KH; Beyer C; Arens C; Vorwerk W
    Laryngorhinootologie; 2011 Dec; 90(12):747-52. PubMed ID: 21544750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations.
    Braun K; Böhnke F; Stark T
    Acta Otolaryngol; 2012 Jun; 132(6):603-13. PubMed ID: 22384791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.