These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 18625333)

  • 1. Transient oxidation as a mechanistic strategy in enzymatic catalysis.
    Tanner ME
    Curr Opin Chem Biol; 2008 Oct; 12(5):532-8. PubMed ID: 18625333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dismutase activity of ADP-L-glycero-D-manno-heptose 6-epimerase: evidence for a direct oxidation/reduction mechanism.
    Morrison JP; Read JA; Coleman WG; Tanner ME
    Biochemistry; 2005 Apr; 44(15):5907-15. PubMed ID: 15823050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of the reaction catalyzed by ADP-beta-L-glycero-D-manno-heptose 6-epimerase.
    Read JA; Ahmed RA; Morrison JP; Coleman WG; Tanner ME
    J Am Chem Soc; 2004 Jul; 126(29):8878-9. PubMed ID: 15264802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient chemoenzymatic synthesis of ADP-D-glycero-beta-D-manno-heptose and a mechanistic study of ADP-L-glycero-D-manno-heptose 6-epimerase.
    Read JA; Ahmed RA; Tanner ME
    Org Lett; 2005 Jun; 7(12):2457-60. PubMed ID: 15932222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-base mechanism for Escherichia coli ADP-L-glycero-D-manno-heptose 6-epimerase.
    Morrison JP; Tanner ME
    Biochemistry; 2007 Mar; 46(12):3916-24. PubMed ID: 17316025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intermediate release by ADP-L-glycero-D-manno-heptose 6-epimerase.
    Mayer A; Tanner ME
    Biochemistry; 2007 May; 46(20):6149-55. PubMed ID: 17455913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and action mechanism of ligninolytic enzymes.
    Wong DW
    Appl Biochem Biotechnol; 2009 May; 157(2):174-209. PubMed ID: 18581264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dispelling the myths--biocatalysis in industrial synthesis.
    Schoemaker HE; Mink D; Wubbolts MG
    Science; 2003 Mar; 299(5613):1694-7. PubMed ID: 12637735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of enzyme mechanisms using fluorinated substrate analogues.
    Pongdee R; Liu HW
    Bioorg Chem; 2004 Oct; 32(5):393-437. PubMed ID: 15381404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancing biocatalysis through enzyme, cellular, and platform engineering.
    Cirino PC; Sun L
    Biotechnol Prog; 2008; 24(3):515-9. PubMed ID: 18335955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient-state kinetic approach to mechanisms of enzymatic catalysis.
    Fisher HF
    Acc Chem Res; 2005 Mar; 38(3):157-66. PubMed ID: 15766234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate supply for effective biocatalysis.
    Kim PY; Pollard DJ; Woodley JM
    Biotechnol Prog; 2007; 23(1):74-82. PubMed ID: 17269674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct electrochemistry of redox enzymes as a tool for mechanistic studies.
    Léger C; Bertrand P
    Chem Rev; 2008 Jul; 108(7):2379-438. PubMed ID: 18620368
    [No Abstract]   [Full Text] [Related]  

  • 14. Characteristics of nearly dry enzymes in organic solvents: implications for biocatalysis in the absence of water.
    Clark DS
    Philos Trans R Soc Lond B Biol Sci; 2004 Aug; 359(1448):1299-307; discussion 1307, 1323-8. PubMed ID: 15306384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linking distinct conformations of nicotinamide adenine dinucleotide with protein fold/function.
    Kuppuraj G; Sargsyan K; Hua YH; Merrill AR; Lim C
    J Phys Chem B; 2011 Jun; 115(24):7932-9. PubMed ID: 21612228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunneling of intermediates in enzyme-catalyzed reactions.
    Weeks A; Lund L; Raushel FM
    Curr Opin Chem Biol; 2006 Oct; 10(5):465-72. PubMed ID: 16931112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways.
    Bornscheuer UT; Kazlauskas RJ
    Angew Chem Int Ed Engl; 2004 Nov; 43(45):6032-40. PubMed ID: 15523680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel BioXAS technique with sub-millisecond time resolution to track oxidation state and structural changes at biological metal centers.
    Haumann M; Müller C; Liebisch P; Neisius T; Dau H
    J Synchrotron Radiat; 2005 Jan; 12(Pt 1):35-44. PubMed ID: 15616363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in NADH electrochemical sensing design.
    Radoi A; Compagnone D
    Bioelectrochemistry; 2009 Sep; 76(1-2):126-34. PubMed ID: 19608463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing catalytic promiscuity for biocatalysis.
    Kazlauskas RJ
    Curr Opin Chem Biol; 2005 Apr; 9(2):195-201. PubMed ID: 15811805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.