These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
580 related articles for article (PubMed ID: 18626130)
1. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles. Blake RW; Ng H; Chan KH; Li J Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130 [TBL] [Abstract][Full Text] [Related]
2. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor. Curet OM; Patankar NA; Lauder GV; MacIver MA Bioinspir Biomim; 2011 Jun; 6(2):026004. PubMed ID: 21474864 [TBL] [Abstract][Full Text] [Related]
3. Indirect adaptive output feedback control of a biorobotic AUV using pectoral-like mechanical fins. Naik MS; Singh SN; Mittal R Bioinspir Biomim; 2009 Jun; 4(2):026001. PubMed ID: 19276512 [TBL] [Abstract][Full Text] [Related]
4. Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: implications for bio-inspired design. Russo RS; Blemker SS; Fish FE; Bart-Smith H Bioinspir Biomim; 2015 Jun; 10(4):046002. PubMed ID: 26079094 [TBL] [Abstract][Full Text] [Related]
5. Effect of caudal fin flexibility on the propulsive efficiency of a fish-like swimmer. Bergmann M; Iollo A; Mittal R Bioinspir Biomim; 2014 Sep; 9(4):046001. PubMed ID: 25252883 [TBL] [Abstract][Full Text] [Related]
6. Parametric study of the swimming performance of a fish robot propelled by a flexible caudal fin. Low KH; Chong CW Bioinspir Biomim; 2010 Dec; 5(4):046002. PubMed ID: 21068469 [TBL] [Abstract][Full Text] [Related]
7. Hydrodynamic investigation of a self-propelled robotic fish based on a force-feedback control method. Wen L; Wang TM; Wu GH; Liang JH Bioinspir Biomim; 2012 Sep; 7(3):036012. PubMed ID: 22556135 [TBL] [Abstract][Full Text] [Related]
8. Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro). Villanueva AA; Marut KJ; Michael T; Priya S Bioinspir Biomim; 2013 Dec; 8(4):046005. PubMed ID: 24166747 [TBL] [Abstract][Full Text] [Related]
9. Hydrodynamics of a robotic fish tail: effects of the caudal peduncle, fin ray motions and the flow speed. Ren Z; Yang X; Wang T; Wen L Bioinspir Biomim; 2016 Feb; 11(1):016008. PubMed ID: 26855405 [TBL] [Abstract][Full Text] [Related]
10. A novel autonomous, bioinspired swimming robot developed by neuroscientists and bioengineers. Stefanini C; Orofino S; Manfredi L; Mintchev S; Marrazza S; Assaf T; Capantini L; Sinibaldi E; Grillner S; Wallén P; Dario P Bioinspir Biomim; 2012 Jun; 7(2):025001. PubMed ID: 22619181 [TBL] [Abstract][Full Text] [Related]
11. Effect of vehicle configuration on the performance of a submersible pulsed-jet vehicle at intermediate Reynolds number. Nichols JT; Krueger PS Bioinspir Biomim; 2012 Sep; 7(3):036010. PubMed ID: 22549087 [TBL] [Abstract][Full Text] [Related]
12. Propulsion of swimming microrobots inspired by metachronal waves in ciliates: from biology to material specifications. Palagi S; Jager EW; Mazzolai B; Beccai L Bioinspir Biomim; 2013 Dec; 8(4):046004. PubMed ID: 24103844 [TBL] [Abstract][Full Text] [Related]
13. Modelling cephalopod-inspired pulsed-jet locomotion for underwater soft robots. Renda F; Giorgio-Serchi F; Boyer F; Laschi C Bioinspir Biomim; 2015 Sep; 10(5):055005. PubMed ID: 26414068 [TBL] [Abstract][Full Text] [Related]
14. Evolutionary multiobjective design of a flexible caudal fin for robotic fish. Clark AJ; Tan X; McKinley PK Bioinspir Biomim; 2015 Nov; 10(6):065006. PubMed ID: 26601975 [TBL] [Abstract][Full Text] [Related]
15. Biomechanics of swimming in the pufferfish Diodon holocanthus: propulsive momentum enhancement is an adaptation for thrust production in an undulatory median and paired-fin swimmer. Blake RW; Chan KH J Fish Biol; 2011 Dec; 79(7):1774-94. PubMed ID: 22141887 [TBL] [Abstract][Full Text] [Related]
16. Evidence of self-correcting spiral flows in swimming boxfishes. Bartol IK; Gordon MS; Webb P; Weihs D; Gharib M Bioinspir Biomim; 2008 Mar; 3():014001. PubMed ID: 18364559 [TBL] [Abstract][Full Text] [Related]
17. Biomimetic and bio-inspired robotics in electric fish research. Neveln ID; Bai Y; Snyder JB; Solberg JR; Curet OM; Lynch KM; MacIver MA J Exp Biol; 2013 Jul; 216(Pt 13):2501-14. PubMed ID: 23761475 [TBL] [Abstract][Full Text] [Related]
18. Launching the AquaMAV: bioinspired design for aerial-aquatic robotic platforms. Siddall R; Kovač M Bioinspir Biomim; 2014 Sep; 9(3):031001. PubMed ID: 24615533 [TBL] [Abstract][Full Text] [Related]
19. Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot. Park YJ; Huh TM; Park D; Cho KJ Bioinspir Biomim; 2014 Sep; 9(3):036002. PubMed ID: 24584214 [TBL] [Abstract][Full Text] [Related]
20. A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming. Richards CT; Clemente CJ Bioinspir Biomim; 2012 Mar; 7(1):016010. PubMed ID: 22345392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]