These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 18626893)

  • 1. On the issue of interfacial activation of lipase in nonaqueous media.
    Louwrier A; Drtina GJ; Klibanov AM
    Biotechnol Bioeng; 1996 Apr; 50(1):1-5. PubMed ID: 18626893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remarkable activation of enzymes in nonaqueous media by denaturing organic cosolvents.
    Almarsson O; Klibanov AM
    Biotechnol Bioeng; 1996 Jan; 49(1):87-92. PubMed ID: 18623557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipases at interfaces: unique interfacial properties as globular proteins.
    Reis P; Miller R; Krägel J; Leser M; Fainerman VB; Watzke H; Holmberg K
    Langmuir; 2008 Jun; 24(13):6812-9. PubMed ID: 18512870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperactivation of Rhizomucor miehei lipase by hydrophobic xerogels.
    Aucoin MG; Erhardt FA; Legge RL
    Biotechnol Bioeng; 2004 Mar; 85(6):647-55. PubMed ID: 14966806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural effects of amphiphiles on Candida rugosa lipase activation by freeze-drying of aqueous solution of enzyme and amphiphile.
    Mine Y; Fukunaga K; Samejima K; Yoshimoto M; Nakao K; Sugimura Y
    J Biosci Bioeng; 2003; 96(6):525-8. PubMed ID: 16233568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipases at interfaces: a review.
    Reis P; Holmberg K; Watzke H; Leser ME; Miller R
    Adv Colloid Interface Sci; 2009; 147-148():237-50. PubMed ID: 18691682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B Lipases. I. Interfacial activation and substrate (ethanol, oleic acid) adsorption.
    Foresti ML; Ferreira ML
    Biomacromolecules; 2004; 5(6):2366-75. PubMed ID: 15530053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific anion effects on enzymatic activity in nonaqueous media.
    Bilanicová D; Salis A; Ninham BW; Monduzzi M
    J Phys Chem B; 2008 Sep; 112(38):12066-72. PubMed ID: 18729508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How gastric lipase, an interfacial enzyme with a Ser-His-Asp catalytic triad, acts optimally at acidic pH.
    Chahinian H; Snabe T; Attias C; Fojan P; Petersen SB; Carrière F
    Biochemistry; 2006 Jan; 45(3):993-1001. PubMed ID: 16411775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic model for enzyme interfacial activity and stability: pa-hydroxynitrile lyase at the diisopropyl ether/water interface.
    Cascão Pereira LG; Hickel A; Radke CJ; Blanch HW
    Biotechnol Bioeng; 2002 Jun; 78(6):595-605. PubMed ID: 11992525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic activity of lipase immobilized onto ultrathin films of cellulose esters.
    Kosaka PM; Kawano Y; El Seoud OA; Petri DF
    Langmuir; 2007 Nov; 23(24):12167-73. PubMed ID: 17949116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dramatic enhancement of enzymatic activity in organic solvents by lyoprotectants.
    Debulis K; Klibanov AM
    Biotechnol Bioeng; 1993 Mar; 41(5):566-71. PubMed ID: 18609588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Competition between lipases and monoglycerides at interfaces.
    Reis P; Holmberg K; Miller R; Krägel J; Grigoriev DO; Leser ME; Watzke HJ
    Langmuir; 2008 Jul; 24(14):7400-7. PubMed ID: 18547084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent immobilization of lipase in organic solvents.
    Stark MB; Holmberg K
    Biotechnol Bioeng; 1989 Oct; 34(7):942-50. PubMed ID: 18588186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of Candida rugosa lipase at alkane-aqueous interfaces: a molecular dynamics study.
    James JJ; Lakshmi BS; Seshasayee AS; Gautam P
    FEBS Lett; 2007 Sep; 581(23):4377-83. PubMed ID: 17765226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immiscible organic solvent inactivation of urease, chymotrypsin, lipase, and ribonuclease: separation of dissolved solvent and interfacial effects.
    Ghatorae AS; Guerra MJ; Bell G; Halling PJ
    Biotechnol Bioeng; 1994 Dec; 44(11):1355-61. PubMed ID: 18618648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of water to evaluate hydrophobicity of organically-modified xerogel enzyme supports.
    Clifford JS; Legge RL
    Biotechnol Bioeng; 2005 Oct; 92(2):231-7. PubMed ID: 15988768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous enzymatic reactions in ionic liquids with poly(ethylene glycol)-modified subtilisin.
    Nakashima K; Maruyama T; Kamiya N; Goto M
    Org Biomol Chem; 2006 Sep; 4(18):3462-7. PubMed ID: 17036141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water-air and water-oil interfaces.
    Xu L; Han G; Hu J; He Y; Pan J; Li Y; Xiang J
    Phys Chem Chem Phys; 2009 Aug; 11(30):6490-7. PubMed ID: 19809681
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipase kinetics in organic-water solvent with amphipathic substrate for chiral reaction.
    Mohapatra SC; Hsu JT
    Biotechnol Bioeng; 1997 Jul; 55(2):399-407. PubMed ID: 18636498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.