These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 18627091)

  • 21. Efficiency of phenol biodegradation by planktonic Pseudomonas pseudoalcaligenes (a constructed wetland isolate) vs. root and gravel biofilm.
    Kurzbaum E; Kirzhner F; Sela S; Zimmels Y; Armon R
    Water Res; 2010 Sep; 44(17):5021-31. PubMed ID: 20705318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Growth kinetics and phenol biodegradation of psychrotrophic Pseudomonas putida LY1.
    Li Y; Li J; Wang C; Wang P
    Bioresour Technol; 2010 Sep; 101(17):6740-4. PubMed ID: 20385485
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source.
    Fonseca GG; Gombert AK; Heinzle E; Wittmann C
    FEMS Yeast Res; 2007 May; 7(3):422-35. PubMed ID: 17233766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM
    J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidation of an inhibitory substrate by washed cells (oxidation of phenol by Pseudomonas putida).
    Sokol W
    Biotechnol Bioeng; 1987 Dec; 30(8):921-7. PubMed ID: 18581530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biodegradation kinetics of 2,4,6-trichlorophenol by an acclimated mixed microbial culture under aerobic conditions.
    Snyder CJ; Asghar M; Scharer JM; Legge RL
    Biodegradation; 2006 Dec; 17(6):535-44. PubMed ID: 16489415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced biodegradation of mixed phenol and sodium salicylate by Pseudomonas putida in membrane contactors.
    Juang RS; Tsai SY
    Water Res; 2006 Nov; 40(19):3517-26. PubMed ID: 17011016
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Degradation of aromatic compounds by Acinetobacter radioresistens S13: growth characteristics on single substrates and mixtures.
    Mazzoli R; Pessione E; Giuffrida MG; Fattori P; Barello C; Giunta C; Lindley ND
    Arch Microbiol; 2007 Jul; 188(1):55-68. PubMed ID: 17483933
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling of p-nitrophenol biodegradation by Ralstonia eutropha via application of the substrate inhibition concept.
    Salehi Z; Sohrabi M; Vahabzadeh F; Fatemi S; Kawase Y
    J Hazard Mater; 2010 May; 177(1-3):582-5. PubMed ID: 20061083
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ACCEL model for accelerating the detoxification kinetics of hydrocarbons requiring initial monooxygenation reactions.
    Dahlen EP; Rittmann BE
    Biodegradation; 2006 Jun; 17(3):237-50. PubMed ID: 16715403
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sand administration as an instrument for biofilm control of Pseudomonas putida ATCC 11172 in chemostat cultures.
    Molin G; Nilsson I
    Biotechnol Bioeng; 1985 Jan; 27(1):117-20. PubMed ID: 18553582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cybernetic modeling of growth in mixed, substitutable substrate environments: Preferential and simultaneous utilization.
    Ramakrishna R; Ramkrishna D; Konopka AE
    Biotechnol Bioeng; 1996 Oct; 52(1):141-51. PubMed ID: 18629860
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined effects of external mass transfer and biodegradation rates on removal of phenol by immobilized Ralstonia eutropha in a packed bed reactor.
    Tepe O; Dursun AY
    J Hazard Mater; 2008 Feb; 151(1):9-16. PubMed ID: 17611023
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biodegradation of phenol by bacterial strains from petroleum-refining wastewater purification plant.
    Pakuła A; Bieszkiewicz E; Boszczyk-Maleszak H; Mycielski R
    Acta Microbiol Pol; 1999; 48(4):373-80. PubMed ID: 10756720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of 4-nitrophenol biodegradation in a sequencing batch reactor.
    Tomei MC; Annesini MC; Luberti R; Cento G; Senia A
    Water Res; 2003 Sep; 37(16):3803-14. PubMed ID: 12909098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of oxygenation reactions in a multi-substrate system-A new approach for estimating substrate-specific true yields.
    Dahlen EP; Rittmann BE
    Biotechnol Bioeng; 2000 Dec; 70(6):685-92. PubMed ID: 11064338
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of phenol by free and immobilized cells of Pseudomonas putida.
    González BG; Herrera TG
    Acta Microbiol Pol; 1995; 44(3-4):285-296. PubMed ID: 8934668
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phenol biodegradation in a batch jet loop bioreactor (JLB): kinetics study and pH variation.
    Ucun H; Yildiz E; Nuhoglu A
    Bioresour Technol; 2010 May; 101(9):2965-71. PubMed ID: 20053552
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Macro-kinetic investigation on phenol uptake from air by biofiltration: Influence of superficial gas flow rate and inlet pollutant concentration.
    Zilli M; Fabiano B; Ferraiolo A; Converti A
    Biotechnol Bioeng; 1996 Feb; 49(4):391-8. PubMed ID: 18623593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.