These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 18627094)

  • 1. Biodegradation of phenol using the self-cycling fermentation (SCF) process.
    Hughes SM; Cooper DG
    Biotechnol Bioeng; 1996 Jul; 51(1):112-9. PubMed ID: 18627094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical model of self-cycling fermentation.
    Wincure BM; Cooper DG; Rey A
    Biotechnol Bioeng; 1995 Apr; 46(2):180-3. PubMed ID: 18623278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-cycling fermentation in a stirred tank reactor.
    van Walsum GP; Cooper DG
    Biotechnol Bioeng; 1993 Nov; 42(10):1175-80. PubMed ID: 18609666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of phenol biodegradation in the presence of glucose.
    Wang KW; Baltzis BC; Lewandowski GA
    Biotechnol Bioeng; 1996 Jul; 51(1):87-94. PubMed ID: 18627091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A kinetics study on the biodegradation of synthetic wastewater simulating effluent from an advanced oxidation process using Pseudomonas putida CECT 324.
    Martín MM; Pérez JA; Fernández FG; Sánchez JL; López JL; Rodríguez SM
    J Hazard Mater; 2008 Mar; 151(2-3):780-8. PubMed ID: 17646049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel.
    El-Naas MH; Al-Muhtaseb SA; Makhlouf S
    J Hazard Mater; 2009 May; 164(2-3):720-5. PubMed ID: 18829170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition kinetics of phenol degradation from unstable steady-state data.
    Schröder M; Müller C; Posten C; Deckwer WD; Hecht V
    Biotechnol Bioeng; 1997 Jun; 54(6):567-76. PubMed ID: 18636412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuos IBE fermentation by immobilized growing Clostridium beijerinckii cells in a stirred-tank fermentor.
    Krouwel PG; Groot WJ; Kossen NW
    Biotechnol Bioeng; 1983 Jan; 25(1):281-99. PubMed ID: 18548553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by Pseudomonas putida.
    Annadurai G; Ling LY; Lee JF
    J Hazard Mater; 2008 Feb; 151(1):171-8. PubMed ID: 17618738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance comparison of a continuous-flow stirred-tank reactor and an anaerobic sequencing batch reactor for fermentative hydrogen production depending on substrate concentration.
    Kim SH; Han SK; Shin HS
    Water Sci Technol; 2005; 52(10-11):23-9. PubMed ID: 16459773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioreactor strategies for the treatment of growth-inhibitory waste: an analysis of thiodiglycol degradation, the main hydrolysis product of sulfur mustard.
    Lee T; Pham MQ; Weigand WA; Harvey SP; Bentley WE
    Biotechnol Prog; 1996; 12(4):533-9. PubMed ID: 8987480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new process for efficiently producing methane from waste activated sludge: alkaline pretreatment of sludge followed by treatment of fermentation liquid in an EGSB reactor.
    Zhang D; Chen Y; Zhao Y; Ye Z
    Environ Sci Technol; 2011 Jan; 45(2):803-8. PubMed ID: 21128635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibiotic production by Streptomyces aureofaciens using self-cycling fermentation.
    Zenaitis MG; Cooper DG
    Biotechnol Bioeng; 1994 Dec; 44(11):1331-6. PubMed ID: 18618645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenol biodegradation in a batch jet loop bioreactor (JLB): kinetics study and pH variation.
    Ucun H; Yildiz E; Nuhoglu A
    Bioresour Technol; 2010 May; 101(9):2965-71. PubMed ID: 20053552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation process development using a bacterial cytochrome in vivo.
    Horowitz JB; Vilker VL
    Biotechnol Bioeng; 1994 Jun; 44(2):248-55. PubMed ID: 18618691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of an inhibitory substrate by washed cells (oxidation of phenol by Pseudomonas putida).
    Sokol W
    Biotechnol Bioeng; 1987 Dec; 30(8):921-7. PubMed ID: 18581530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rational design and optimization of fed-batch and continuous fermentations.
    Zhang W; Inan M; Meagher MM
    Methods Mol Biol; 2007; 389():43-64. PubMed ID: 17951634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced acetone-butanol fermentation using repeated fed-batch operation coupled with cell recycle by membrane and simultaneous removal of inhibitory products by adsorption.
    Yang X; Tsao GT
    Biotechnol Bioeng; 1995 Aug; 47(4):444-50. PubMed ID: 18623420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.