These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

46 related articles for article (PubMed ID: 18627095)

  • 1. A method for measuring bacterial chemotaxis parameters in a microcapillary.
    Liu Z; Papadopoulos KD
    Biotechnol Bioeng; 1996 Jul; 51(1):120-5. PubMed ID: 18627095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial motility, collisions, and aggregation in a 3-mum-diameter capillary.
    Liu Z; Chen W; Papadopoulos KD
    Biotechnol Bioeng; 1997 Jan; 53(2):238-41. PubMed ID: 18633971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling microbial chemotaxis in a diffusion gradient chamber.
    Widman MT; Emerson D; Chiu CC; Worden RM
    Biotechnol Bioeng; 1997 Jul; 55(1):191-205. PubMed ID: 18636457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of bacterial random motility and chemotaxis coefficients: I. Stopped-flow diffusion chamber assay.
    Ford RM; Phillips BR; Quinn JA; Lauffenburger DA
    Biotechnol Bioeng; 1991 Mar; 37(7):647-60. PubMed ID: 18600656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative relationships between single-cell and cell-population model parameters for chemosensory migration responses of alveolar macrophages to C5a.
    Farrell BE; Daniele RP; Lauffenburger DA
    Cell Motil Cytoskeleton; 1990; 16(4):279-93. PubMed ID: 2393911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A material-balance approach for modeling bacterial chemotaxis to a consumable substrate in the capillary assay.
    Marx RB; Aitken MD
    Biotechnol Bioeng; 2000 May; 68(3):308-15. PubMed ID: 10745199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of bacterial random motility and chemotaxis coefficients: II. Application of single-cell-based mathematical model.
    Ford RM; Lauffenburger DA
    Biotechnol Bioeng; 1991 Mar; 37(7):661-72. PubMed ID: 18600657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Run and tumble chemotaxis in a shear flow: the effect of temporal comparisons, persistence, rotational diffusion, and cell shape.
    Locsei JT; Pedley TJ
    Bull Math Biol; 2009 Jul; 71(5):1089-116. PubMed ID: 19198954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Long-term chemotaxis of neutrophils in stable gradients: preliminary evidence of periodic behavior.
    Dunn GA; Zicha D
    Blood Cells; 1993; 19(1):25-39; discussion 39-41. PubMed ID: 8400310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial chemotaxis toward a NAPL source within a pore-scale microfluidic chamber.
    Wang X; Long T; Ford RM
    Biotechnol Bioeng; 2012 Jul; 109(7):1622-8. PubMed ID: 22252781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of the chemotaxis coefficient for human neutrophils in the under-agarose migration assay.
    Tranquillo RT; Zigmond SH; Lauffenburger DA
    Cell Motil Cytoskeleton; 1988; 11(1):1-15. PubMed ID: 3208295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays.
    Kim M; Kim T
    Anal Chem; 2010 Nov; 82(22):9401-9. PubMed ID: 20979359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic techniques for the analysis of bacterial chemotaxis.
    Englert DL; Jayaraman A; Manson MD
    Methods Mol Biol; 2009; 571():1-23. PubMed ID: 19763956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shewanella oneidensis MR-1 chemotaxis in a diffusion gradient chamber.
    Li R; Auchtung JM; Tiedje JM; Worden RM
    Environ Sci Technol; 2011 Feb; 45(3):1014-20. PubMed ID: 21174460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of leukocyte motility and chemotaxis parameters with a linear under-agarose migration assay.
    Lauffenburger D; Rothman C; Zigmond SH
    J Immunol; 1983 Aug; 131(2):940-7. PubMed ID: 6345674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RT-qPCR based quantitative analysis of gene expression in single bacterial cells.
    Gao W; Zhang W; Meldrum DR
    J Microbiol Methods; 2011 Jun; 85(3):221-7. PubMed ID: 21440012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of bacterial chemotaxis in defined concentration gradients. A model for chemotaxis toward L-serine.
    Dahlquist FW; Elwell RA; Lovely PS
    J Supramol Struct; 1976; 4(3):329-42. PubMed ID: 772315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis.
    Si G; Yang W; Bi S; Luo C; Ouyang Q
    Lab Chip; 2012 Apr; 12(7):1389-94. PubMed ID: 22361931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model-based approach for automated in vitro cell tracking and chemotaxis analyses.
    Debeir O; Camby I; Kiss R; Van Ham P; Decaestecker C
    Cytometry A; 2004 Jul; 60(1):29-40. PubMed ID: 15229855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.