These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18627096)

  • 1. Removal of chlorophenols from wastewater by immobilized horseradish peroxidase.
    Tatsumi K; Wada S; Ichikawa H
    Biotechnol Bioeng; 1996 Jul; 51(1):126-30. PubMed ID: 18627096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic removal of phenol and p-chlorophenol in enzyme reactor: horseradish peroxidase immobilized on magnetic beads.
    Bayramoğlu G; Arica MY
    J Hazard Mater; 2008 Aug; 156(1-3):148-55. PubMed ID: 18207637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlorophenol degradation in soil columns inoculated with Anthracophyllum discolor immobilized on wheat grains.
    Diez MC; Gallardo F; Tortella G; Rubilar O; Navia R; Bornhardt C
    J Environ Manage; 2012 Mar; 95 Suppl():S83-7. PubMed ID: 20971547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization.
    Bódalo A; Bastida J; Máximo MF; Montiel MC; Gómez M; Murcia MD
    Bioprocess Biosyst Eng; 2008 Oct; 31(6):587-93. PubMed ID: 18270748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of phenolic wastewater by horseradish peroxidase immobilized by bioaffinity layering.
    Dalal S; Gupta MN
    Chemosphere; 2007 Mar; 67(4):741-7. PubMed ID: 17140630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive dechlorination of chlorophenols by a pentachlorophenol- acclimated methanogenic consortium.
    Nicholson DK; Woods SL; Istok JD; Peek DC
    Appl Environ Microbiol; 1992 Jul; 58(7):2280-6. PubMed ID: 1637165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functionalized chitosan and sodium alginate for the effective removal of recalcitrant organic pollutants.
    Thirumavalavan M
    Int J Biol Macromol; 2023 Jul; 243():125276. PubMed ID: 37301344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of alternative treatments for 4-chlorophenol removal from aqueous solutions: use of free and immobilized soybean peroxidase and KrCl excilamp.
    Gomez M; Matafonova G; Gomez JL; Batoev V; Christofi N
    J Hazard Mater; 2009 Sep; 169(1-3):46-51. PubMed ID: 19361921
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2,4-Dichlorophenol Enzymatic Removal and Its Kinetic Study Using Horseradish Peroxidase Crosslinked to Nano Spray-Dried Poly(Lactic-Co-Glycolic Acid) Fine Particles.
    Dahili LA; Nagy E; Feczkó T
    J Microbiol Biotechnol; 2017 Apr; 27(4):768-774. PubMed ID: 28173696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold incineration of chlorophenols in aqueous solution by advanced electrochemical process electro-Fenton. Effect of number and position of chlorine atoms on the degradation kinetics.
    Oturan N; Panizza M; Oturan MA
    J Phys Chem A; 2009 Oct; 113(41):10988-93. PubMed ID: 19764768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of chlorophenols in aqueous solution by carbon black low-cost adsorbents. Equilibrium study and influence of operation conditions.
    Domínguez-Vargas JR; Navarro-Rodríguez JA; de Heredia JB; Cuerda-Correa EM
    J Hazard Mater; 2009 Sep; 169(1-3):302-8. PubMed ID: 19403238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of phenol and chlorophenols from water with reusable dye-affinity hollow fibers.
    Senel S; Kara A; Alsancak G; Denizli A
    J Hazard Mater; 2006 Nov; 138(2):317-24. PubMed ID: 17018244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sequential treatment via Trametes versicolor and UV/TiO2/Ru(x)Se(y) to reduce contaminants in waste water resulting from the bleaching process during paper production.
    Pedroza AM; Mosqueda R; Alonso-Vante N; Rodríguez-Vázquez R
    Chemosphere; 2007 Mar; 67(4):793-801. PubMed ID: 17123583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of chlorophenols from aquatic systems using the dried and dead fungus Pleurotus sajor caju.
    Denizli A; Cihangir N; Tüzmen N; Alsancak G
    Bioresour Technol; 2005 Jan; 96(1):59-62. PubMed ID: 15364081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterisation of acid/basic modified adsorbents. Application for chlorophenols removal.
    Domínguez JR; Durán-Valle CJ; Mateos-García G
    Environ Res; 2022 May; 207():112187. PubMed ID: 34634312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Levels and spatial distribution of chlorophenols - 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol in surface water of China.
    Gao J; Liu L; Liu X; Zhou H; Huang S; Wang Z
    Chemosphere; 2008 Apr; 71(6):1181-7. PubMed ID: 18037470
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The transformation of chlorophenols by lactoperoxidase.
    Oberg LG; Paul KG
    Biochim Biophys Acta; 1985 Sep; 842(1):30-8. PubMed ID: 4041482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential applications of immobilized bitter gourd (Momordica charantia) peroxidase in the removal of phenols from polluted water.
    Akhtar S; Husain Q
    Chemosphere; 2006 Nov; 65(7):1228-35. PubMed ID: 16764905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria.
    Wang CC; Lee CM; Lu CJ; Chuang MS; Huang CZ
    Chemosphere; 2000 Dec; 41(12):1873-9. PubMed ID: 11061309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal efficiency and toxicity reduction of 4-chlorophenol with physical, chemical and biochemical methods.
    Gómez M; Murcia MD; Dams R; Christofi N; Gómez E; Gómez JL
    Environ Technol; 2012; 33(7-9):1055-64. PubMed ID: 22720434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.