These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 18627156)

  • 1. The carbon-skeleton rearrangement in tropane alkaloid biosynthesis.
    Sandala GM; Smith DM; Radom L
    J Am Chem Soc; 2008 Aug; 130(32):10684-90. PubMed ID: 18627156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic insights into the cytochrome P450-mediated oxidation and rearrangement of littorine in tropane alkaloid biosynthesis.
    Nasomjai P; Reed DW; Tozer DJ; Peach MJ; Slawin AM; Covello PS; O'Hagan D
    Chembiochem; 2009 Sep; 10(14):2382-93. PubMed ID: 19693762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional genomic analysis of alkaloid biosynthesis in Hyoscyamus niger reveals a cytochrome P450 involved in littorine rearrangement.
    Li R; Reed DW; Liu E; Nowak J; Pelcher LE; Page JE; Covello PS
    Chem Biol; 2006 May; 13(5):513-20. PubMed ID: 16720272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthetic studies on the tropane alkaloid hyoscyamine in Datura stramonium; hyoscyamine is stable to in vivo oxidation and is not derived from littorine via a vicinal interchange process.
    Patterson S; O'Hagan D
    Phytochemistry; 2002 Oct; 61(3):323-9. PubMed ID: 12359518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of 1,3-migration in allylperoxyl radicals: computational evidence for the formation of a loosely bound radical-dioxygen complex.
    Olivella S; Solé A
    J Am Chem Soc; 2003 Sep; 125(35):10641-50. PubMed ID: 12940748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The azulene-to-naphthalene rearrangement revisited: a DFT study of intramolecular and radical-promoted mechanisms.
    Alder RW; East SP; Harvey JN; Oakley MT
    J Am Chem Soc; 2003 May; 125(18):5375-87. PubMed ID: 12720451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic study of littorine rearrangement in Datura innoxia hairy roots by (13)C NMR spectroscopy.
    Lanoue A; Boitel-Conti M; Portais JC; Laberche JC; Barbotin JN; Christen P; Sangwan-Norreel B
    J Nat Prod; 2002 Aug; 65(8):1131-5. PubMed ID: 12193016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multistate reactivity in styrene epoxidation by compound I of cytochrome p450: mechanisms of products and side products formation.
    Kumar D; de Visser SP; Shaik S
    Chemistry; 2005 Apr; 11(9):2825-35. PubMed ID: 15744771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Balancing kinetic and thermodynamic control: the mechanism of carbocation cyclization by squalene cyclase.
    Rajamani R; Gao J
    J Am Chem Soc; 2003 Oct; 125(42):12768-81. PubMed ID: 14558824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role and source of 5'-deoxyadenosyl radical in a carbon skeleton rearrangement catalyzed by a plant enzyme.
    Ollagnier S; Kervio E; Rétey J
    FEBS Lett; 1998 Oct; 437(3):309-12. PubMed ID: 9824314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concerted and stepwise reaction mechanisms for the addition of ozone to acetylene: a computational study.
    Chan WT; Weng C; Goddard JD
    J Phys Chem A; 2007 Jun; 111(22):4792-803. PubMed ID: 17500541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. McLafferty rearrangement of the radical cations of butanal and 3-fluorobutanal: a theoretical investigation of the concerted and stepwise mechanisms.
    Norberg D; Salhi-Benachenhou N
    J Comput Chem; 2008 Feb; 29(3):392-406. PubMed ID: 17607719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density functional study of the mechanism of the Beckmann rearrangement catalyzed by H-ZSM-5: a cluster and embedded cluster study.
    Sirijaraensre J; Truong TN; Limtrakul J
    J Phys Chem B; 2005 Jun; 109(24):12099-106. PubMed ID: 16852493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Norlittorine and norhyoscyamine identified as products of littorine and hyoscyamine metabolism by (13)C-labeling in Datura innoxia hairy roots.
    Al Balkhi MH; Schiltz S; Lesur D; Lanoue A; Wadouachi A; Boitel-Conti M
    Phytochemistry; 2012 Feb; 74():105-14. PubMed ID: 22083085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tropane alkaloid biosynthesis. A century old problem unresolved.
    Humphrey AJ; O'Hagan D
    Nat Prod Rep; 2001 Oct; 18(5):494-502. PubMed ID: 11699882
    [No Abstract]   [Full Text] [Related]  

  • 16. Rearrangement pathways of five-membered ring enlargement in carbocations: quantum chemical calculations and deuterium kinetic isotope effects.
    Vrcek V; Saunders M; Kronja O
    J Org Chem; 2003 Mar; 68(5):1859-66. PubMed ID: 12608802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational investigation of the mechanism of addition of singlet carbenes to bicyclobutanes.
    Rablen PR; Paiz AA; Thuronyi BW; Jones M
    J Org Chem; 2009 Jun; 74(11):4252-61. PubMed ID: 19408908
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of metal chloride-promoted Mukaiyama aldol reactions.
    Wong CT; Wong MW
    J Org Chem; 2007 Feb; 72(4):1425-30. PubMed ID: 17288388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational studies on biosynthetic carbocation rearrangements leading to sativene, cyclosativene, alpha-ylangene, and beta-ylangene.
    Lodewyk MW; Gutta P; Tantillo DJ
    J Org Chem; 2008 Sep; 73(17):6570-9. PubMed ID: 18681400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low barrier hydrogenolysis of the carbon-heteroatom bond as catalyzed by HAlF(4).
    Zhong G; Chan B; Radom L
    Org Lett; 2009 Feb; 11(3):749-51. PubMed ID: 19140697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.